

Spatiotemporal brain dynamics underlying Attentional Bias Modifications

Etienne Sallard, Léa Hartmann, Lucas Spierer

Day of cognition meeting 7th October 2015

Attentional bias

- Tendency to orient attention toward specific elements: emotional or motivational valence
 = normal / abnormal
- AB plays a central role in the development and the maintenance of addictions (e.g. Bradley et al., 2003) anxiety disorders (e.g. Hirsch & Mathews, 2012) and phobia (Fox et al., 2015)

 AB always investigated in population with initial bias (e.g. Attwood et al., 2008; Browning et al., 2010; Jones et al., 2014)

Attentional bias: measure

- Dot-probe task (DPT)
 - Spatial attention indexed by the speed of response to visual probes
 - $-\Delta$ AB score = (RT condition 1 RT condition 2)

Attentional bias: modification

Modified DPT → AB modification (ABM):

Attentional bias: modification

• ABM:

- Increased/decreased in healthy (MacLeod et al., 2002; Eldar et al., 2008; Browning et al., 2010)
- Increased/decreased in addictions and anxiety disorders (Attwood et al., 2008; Amir et al., 2009)

ABM: neurophysiological level

• Lateral pre-frontal cortex, temporo-occipital and parietal areas from 100-300ms post-cue onset (Monk et al., 2004; Browning et al., 2012, Suway et al., 2013; Osinsky et al., 2014)

Temporal resolution (MRI) and low level analyses of the signal (EEG) limit the neurophysiological interpretation

ABM study. Aims

 Act with specific training on the AB balance in healthy adults with dot-probe task using basic stimuli (i.e. abstract representation)

 Investigate the spatiotemporal brain dynamics underlying ABM

Hypothesis

If ABM training increase AB using basic stimuli

Then AB should manifest at the end of the training

Methods

- Participants: N=24 (16 females; 23±3 years)
- Dot-probe task:

Methods

- Behavioral measures:
 - − RT: RT POS-NEG \rightarrow \triangle AB: BEG-END \rightarrow \triangle ABM

- Questionnaires:
 - State of anxiety, stress and mood (VAS)

- Traits of impulsivity (BIS11), anxiety and depression scale (HADS)
- Electrophysiological measures: ERPs modulations
 - Global Map Dissimilarity (GMD)
 - Inverse Solution (IS)
 - Dro processing:
- Pre-processing:
 - No AB at the BEG of the training

Behavior: group splitting

- Δ ABM (RT POS-NEG): BEG END =
 - Positive difference: Toward group (N=12)
 - Negative difference: Away group (N=12)

Electrical Neuroimaging

Discussion

 AB is modified either in favor of the positive cue (approach) or in favor of the negative cue (avoidance)

Inter-individual difference in the sensibility to positive or negative associations between cue and task-relevant information

 Development of AB toward or away initially neutral stimuli was associated with electrophysiological modulations to the cue at 50-84 ms within left temporo-parieto-occipital junction

ABM depend on the left ventral visual pathway involved in the processing of stimulus saliency

Spatiotemporal brain dynamics underlying Attentional Bias Modifications

Etienne Sallard, Léa Hartmann, Lucas Spierer

Day of cognition meeting 7th October 2015