UNI FR

Distinct neuronal bases involved in the proposer and responder condition of the ultimatum game

S. K. Horat¹, G. Favre¹, F. R. Herrmann², P. Missonnier^{1,3},

M. C. G. Merlo¹

¹Univ. of Fribourg, Fribourg, Switzerland; ²Univ. Hosp. of Geneva, Geneva, Switzerland; ³Mental Health Network Fribourg (RFSM), Marsens, Switzerland

Outline

- Introduction
- Methods
- Task Design
- Behavioral Results
- EEG Results
 - Event-Related Potentials
 - Independent Component Analysis
 - Source Reconstruction
- Summary
- Conclusion
- Acknowledgements

Introduction

- Ultimatum Game (UG): Paradigm to investigate monetary choices
- Behavior of humans already well established
- Underlying cognitive processes remain poorly understood

AIM:

• Examine the neuronal bases of the specific behaviors of the proposer and responder condition

Methods

- ▶ 12 healthy participants
- 128 electrode encephalography
- Analysis:
 - Event-Related Potential Analysis: time-locked brain responses
 - Independent Component Analysis
 - Source Reconstruction

Task Design

Proposer

Responder

Goal: Gain maximum amount of money

Range: 1-10 CHF

Repetition: 3 alternated blocks of 30 trials (total: 90) each

Behavioral Results

Propositions

Acceptance Rates (%)

Event-Related Potentials

PROPOSER

- Shorter latency and increased amplitude for the P2 component (170 – 260ms)
- Supplementary component N2 (170 190ms)

RESPONDER

- Shorter latency and increased amplitude for the feedback-related negativity (FRN) component (280 360ms)
- Higher mean activity for the late positive component (LPC) (360 – 820ms)

Independent Component Analysis

Source Reconstruction

N2 time range (170-190ms)

PROPOSER

- Higher activity in orbitofrontal cortex
- Higher activity in anterior cingulate cortex

Summary of Main Findings I

► N2:

• only present in Proposer condition

- ACC and orbitofrontal cortex activation
- Conflict monitoring more choices in Proposer

▶ P2:

- Longer latency and smaller amplitude for Responder
- Working memory (WM) and attention involved
- Responder condition demands a higher WM activation as threshold of acceptance has to be kept in mind

Summary of Main Findings II

Feedback-Related Negativity:

- Higher amplitude and shorter latency for Responder
- Resolution of conflict if rules change (feedback processing)
- Emotional feedback (fair/unfairness)
- Late Positive Component:
 - Higher mean activity for Responder condition
 - Active maintenance and updating of WM
 - Responder condition demands a higher WM activation as threshold of acceptance has to be kept in mind

Conclusions

- Proposing an offer or responding to it require the involvement of distinct neuronal networks at different time points during the decision-making process
- Different cognitive processes seem to be engaged in both conditions although proposer and responder both aim to gain the maximal amount of money

Acknowledgements

- Laboratory for Psychiatric Neuroscience and Psychotherapy
 - Prof. Marco Merlo, MD
 - Dr. Pascal Missonnier, PhD
 - Dr. Grégoire Favre, MD PhD
- Prof. François Herrmann, MD (UniGe): Statistics
- Dr. Jonas Richiardi, PhD (UniGe): Source Reconstruction
- Dr. Michaël Mouthon, PhD (LCNS): EEG Support

