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Inferring coexistence metrics, such as niche and fitness differences, in changing
environments is key for understanding the mechanism behind species coexistence
and predicting its likelihood. However, it first requires estimating the per capita
interactions between organisms and their intrinsic growth rates—parameters that are
typically measured by isolating organisms from their natural context. Here, we first
use weighted multivariate regression on the per capita growth rates of populations to
estimate these key ecological parameters directly from time-series data of species-rich
communities. Second, we infer niche differences and species resistance, which are two
important metrics for understanding species coexistence. Our approach allows these
metrics to vary over time and under different environmental conditions. We validate
our approach using synthetic data and apply it to both experimental and observational
data as a proof of concept. Experimental results show an expected allocative trade-off
between grazing resistance and rapid growth in algae. Moreover, coexistence likelihood
decreases, and coexistence balance is disturbed under stressful environmental condi-
tions. Observational data suggests variations in intrinsic growth rates and per capita
interactions among autotrophic guilds with respect to seasonal patterns. In addition,
interactions between cyanobacteria with green algae and chrysophytes might indicate
a potential cause for bloom development. Our approach offers a powerful toolbox to
gain insight into the mechanisms underlying ecological dynamics, species coexistence,
and community structures under varying environments. Such an understanding will
help us address important ecological and evolutionary questions, such as explaining
biodiversity patterns and solving the problem of cyanobacteria bloom.

Lotka–Volterra map | intrinsic growth rate | per capita interaction strength | time-series data |
coexistence metrics

Understanding and predicting the responses of entire ecosystems to a changing world
requires studying species not as isolated individuals, but as interacting agents that
collectively determine the emergent properties of complex and dynamic communities.
These properties include species diversity, community structure, coexistence likelihood,
and resistance to environmental perturbation (1–6). Coexistence theory is a key
framework for quantifying the likelihood of species coexistence using metrics such as
niche differences, fitness differences, and species resistance to extinction, especially when
facing environmental perturbations (2, 4, 6). These coexistence metrics are rooted in
two key ecological parameters that underlie most modern ecological and evolutionary
theoretical models (2, 4, 6–11): the intrinsic growth rate of a population and the per capita
interactions. These parameters quantify, respectively, the per capita rate of population
change at low density, meaning in the absence of any limitations, and the effect that
co-occurring organisms have on each other’s abundance. Importantly, these parameters
are highly sensitive to environmental changes, as they depend on abiotic factors, such
as resource availability and temperature. This cascades into variation in coexistence
conditions represented by the coexistence metrics. Studying such variations can help
identify extinction risks for species within a community and uncover their underlying
mechanisms. However, directly measuring or practically estimating the variability of coex-
istence metrics, especially in changing environments, remains challenging for ecologists.

As early as 1969, Vandermeer estimated all pairwise per capita interactions and intrinsic
growth rates of four protozoa species by fitting experimental data with the Lotka–
Volterra multispecies model (12). This work required isolating species in monocultures
and bicultures, demanding at least 10 time series without replication. Subsequently,
Kraft et al. (13), Bartomeus et al. (14), and Van Dyke et al. (15) used complex
experimental setups to estimate the per capita interaction strength among pairs of
competing plants and between plants and pollinators in annual systems, from which
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they studied coexistence metrics. They designed experiments to
measure the functional response of each species along a density
gradient of competitors or mutualistic partners, requiring them
to be isolated from their natural environment. To overcome this
limitation, Ives et al. and Kloppers et al. (16, 17) used time-
series data of population abundances in natural communities
and then applied autoregressive process and integral methods.
Nevertheless, these methods assume constant parameters, which
precludes studying interactions and, therefore, coexistence under
changing environmental conditions. The empirical dynamic
modeling (EDM) framework addresses this challenge (18).
Specifically, the S-map technique is employed for two objectives:
i) predicting and detecting causality through multidimensional
embedding, and ii) inferring the “net” interaction strengths and
their temporal variation.

However, it is crucial to define interaction precisely, as various
nonequivalent definitions exist (19, 20). According to Laska and
Wooton (21), there are three ways to represent the concept of
interaction: i) the Paine’s index, which measures the change
in abundance when a focal species is removed; ii) the Jaco-
bian matrix, which shows the direct effect of one species on
another; and iii) the inverted Jacobian matrix, which includes
both direct and indirect effects (19, 22). These interaction
concepts have important limitations. For instance, Paine’s index
assumes ecological equilibrium, while the Jacobian matrix is
inherently density-dependent. Notably, the “net” interactions
estimated using the S-map technique correspond to elements
of the Jacobian matrix (SI Appendix, section 1). As a result,
they do not represent the per capita interactions, which are
essential for calculating coexistence metrics and understanding
the mechanisms underlying community dynamics.

Our work has two main objectives: i) inferring and validating
intrinsic growth rates and per capita interaction strengths from
time-series data; ii) using these inferences to quantify coexistence
metrics. To achieve this, we introduce an approach, the Lotka–
Volterra map (LV-map), that combines the strength of the EDM
framework with the ecological mechanistic insights of the Lotka–
Volterra model. The EDM framework, especially the S-map
technique (23), uses a weighting kernel that allows variations of
parameters across time. In turn, the Lotka–Volterra model, and
most subsequent population dynamic models, such as the Ricker
model or the Beverton-Holt model (8), hinge on the per capita
basis of population growth (24, 25), providing a mechanistic

interpretation of the inferred parameters. Using these inferred
parameters, we analyze coexistence metrics over time and in dif-
ferent environments to understand community dynamics and ex-
tinction risk. We use the structural approach to coexistence (4, 5).
Nevertheless, other approaches, such as the modern coexistence
theory (2), its recent extension (26), and the assembly graph (27),
can also be applied depending on specific research questions, as all
are rooted in the key ecological parameters that we first estimate.

Inferring the intrinsic growth rates and per capita interactions
enables the identification of mechanisms driving community
dynamics, such as the amplitude and sign of interactions
or allocative trade-offs between growth and defense strategies
(28, 29). Additionally, computing the coexistence metrics unveils
how the coexistence likelihood fluctuates under varying environ-
mental conditions, and identifies which taxonomic groups are
more susceptible to extinction. We believe our approach serves
as a robust tool for addressing many ecological and evolutionary
questions in both experimental setups and natural communities,
as it allows for the analysis of populations within their natural
environments. We validate our approach with synthetic data
and illustrate its success on empirical data from both controlled
experiments and observational studies.

Results

Validation on Synthetic Data. We simulate the dynamics of three
competing species (Fig. 1A and SI Appendix, sections 1 and 2)
and show that the inferred parameters and coexistence metrics
match the values used for the simulation (Fig. 1B). Fig. 1C
illustrates the inference of the so-called cone of feasibility (in
green) and the resistance angles (in gray). This cone defines
the set of intrinsic growth rates leading to the feasibility of the
community. A larger cone implies broader conditions for species
coexistence. The solid angle Ω defined by this cone is a natural
measure of niche differentiation (Materials and Methods). The
three angles (�1, �2, �3) between the vector of intrinsic growth
rates and the border of the feasibility cone (represented by the gray
arc circles), define the maximum change in intrinsic growth rate
that a species can sustain before becoming extinct. These angles,
therefore, measure species resistance to perturbations (Materials
and Methods). To explore the robustness of the LV map, we
simulated different regimes of population dynamics, including
chaos, cycle, and fixed point at three levels of environmental
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Fig. 1. Application of LV map and coexistence metrics on three competing species under a chaotic dynamics and fixed environmental conditions. (A) Population
dynamics from time 0 until time 100. (B) Correlation between inferred parameters and simulated parameters. (C) Geometric representation of the inferred
feasibility cone. Parameters used for the simulations are r = [2.7; 3.24; 4.59], � = −[(4.05,0.621,0.27); (0.81,2.7,0.81); (1.08,1.755,2.70)]. Environmental
noise follows a normal distribution �i ∼ N (0, 0.005 · r2

i ). The cross-validation result and inferred parameters are in SI Appendix, section 2. Here, we do not
present the SE of the estimated parameters because it is too small and becomes invisible.
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D E F

Fig. 2. Application of LV map and coexistence metrics on three competing species under a chaotic regime and changing environmental conditions. (A)
Population dynamics of three competing species with environmental noise. Changes in parameters occur at time point 450. (B) Inferred changing intrinsic
growth rates. (C) Inferred changing per capita interactions of species 1, 2 and 3 on species 3. (D) Inferred coexistence metrics. Dashed lines correspond to
parameters used for simulations and solid lines correspond to inferred parameters. (E and F ) Geometric representation of the inferred feasibility cone in two
environments. Parameters used for the simulation in environment one are r = [2.70; 3.24; 3.24], � = −[(4.05,0.621,0.27); (0.81,2.7,0.81); (1.08,1.755,2.70)].
In environment 2, r3 = 1.89 and �32 = −0.945. Environmental noise follows a normal distribution �i ∼ N (0, 0.005 · r2

i ). Cross validation results and inferred
parameters with time are in SI Appendix, section 5.

noise (SI Appendix, sections 2–4). We show that the LV map
infers correct values of the ecological parameters and coexistence
metrics in all cases. However, larger errors of the estimation occur
in the regime of fixed point dynamics.

To further demonstrate the strength of the LV map and the
potency of inferring coexistence metrics in changing environ-
ments, we validate the LV map on the same community of three
competing species with a shift in environmental conditions. After
the shift, species 3’s population reduces (Fig. 2A). The LV map
detects this perturbation, reflected in the changes of the inferred
parameters. In the first environment, the three species coexist
with relatively balanced population densities (Fig. 2 A and E). In
the second environment, species 3 suffers a decrease in intrinsic
growth rate (Fig. 2B) despite benefiting from weaker competition
from species 2 (Fig. 2C ). In this environment, although the niche
difference is larger than in the first environment, indicating a
higher probability of coexistence, the balance of coexistence is
disturbed. Particularly, species 3 is more prone to extinction
compared to species 1 and 2, as its resistance angle diminishes.
Additionally, simulations with different regimes of population
dynamics at different environmental noise levels show that
the LV map can detect the environmental change and infer
correct parameter values under chaotic and cyclic population
dynamics (SI Appendix, sections 5–7). In the case of fixed point
dynamics, the shift in the environmental condition prevents the
correct inference, as dynamics caused by environmental noise
are entangled with dynamics due to environmental shifts. In

an additional simulation where species 3 becomes extinct, we
successfully detect this event. As species 3 approaches extinction,
the niche difference metric fluctuates significantly due to species
3’s extremely low population density, while its resistance angle
of species 3 reduces to zero (SI Appendix, section 8).

Note that two types of weighting kernels can be used to infer
the intrinsic growth rates and per capita interaction strengths
from the LV map (SI Appendix, section 1). The state-space
kernel considers the Euclidean distances between population
abundances, as introduced in the S-map technique (18, 23).
The time kernel, on the other hand, uses temporal distances
between data points. The parameters �s for the state-space
kernel and �t for the time kernel are determined using the
cross-validation technique. If �s or �t is zero, all data points
are treated equally without weighting, which results in inferred
parameters remaining constant with time. Larger values of �s
and �t results in fluctuating parameters across time and state-
space. The state-space and time kernel perform equally well when
there is no change in environmental conditions. In contrast, the
time weighting kernel proves more effective when environmental
changes result in overlapping state-space dynamics between
the two environments (SI Appendix, sections 2–8). However,
the choice of the weighting kernel can be complicated and
is explained further in Discussion. Here, we present the state-
space weighing kernel for constant environments and the time
weighting kernel for the changing environments. Additional
results can be found in SI Appendix, sections 2–8.
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Application to Empirical Data. To provide a proof of concept of
our approach using empirical data, we first apply the LV map to
a phytoplanktonic predator–prey system from Blasius et al. (30)
and Yoshida et al. (31) experiments (SI Appendix, section 1F). We
then apply it to a high-frequency time series of five phytoplankton
groups from lake data (32) (SI Appendix, section 1G).
Experimental time-series data. We use 12 time series obtained
from two studies [9 time series from Blasius et al. (30) and 3
time series from Yoshida et al. (31)]. The experiments involve
bicultures of algae (resources) consumed by rotifers (consumer)
and were conducted at the clonal level of algae using chemostat
setups under different experimental conditions. Here, we
present a subset of the results from Blasius et al. (30), using
the state-space weighting kernel. A detailed description of the
chemostat setup and additional results can be found in SI
Appendix, sections 1 and 9.

As expected, the inferred intrinsic growth rate of algae is
positive, suggesting their autotrophic nature (Fig. 3A). Their
intraspecific interactions are negative, though, suggesting that the
algae compete for nutrients (Fig. 3B), and the negative effect of
rotifers on algae indicates that the algae are consumed by rotifers
(Fig. 3C ). The intrinsic growth rate of rotifers is almost always
zero or negative, indicating that this consumer cannot survive
without the algae. In some cases, the rotifers have a slightly pos-
itive intrinsic growth rate, implying that they may exhibit some

form of mixotrophic behavior. This result could also be explained
by the ability of rotifers to exploit other resources in the system,
such as particles or dissolved organic carbon sources. Overall, the
effect of algae on rotifers is positive, suggesting that rotifers thrive
on algae, though the negative interactions between rotifers indi-
cate that they compete with each other (SI Appendix, section 9).

Interestingly, our results show an allocative trade-off between
algae growth and defenses. Indeed, Fig. 3 A and C show
that an increase in the intrinsic growth rate corresponds to a
decrease in the amplitude of the per capita death rate of algae
clones consumed by rotifers. The same results were found in
Yoshida’s experiment (SI Appendix, section 9). Allocative trade-
off is common in nature as organisms always experience limited
resources which are spent on growth, reproduction, defense, and
so on (28, 29, 33). Thus, the more energy invested in one trait,
the lesser energy is left for the others.

We show that in experiments with constant low nutrition
influx (80 μm/l), the average niche difference is smaller than
in most experimental conditions, and resistance angles of
Micromelum minutum and rotifers are balanced (Fig. 3 D and E).
Interestingly, under the same constant nutrition influx (80 μm/l)
but with a higher system out flux, the niche difference increases,
indicating a higher possibility of coexistence. In addition, algae
have a higher resistance angle than rotifers (Fig. 3 D and E).
When nutrition influx is periodically fluctuated (from 160 μm/l
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to 0 μm/l every eight days), creating a stressful environment,
the niche difference shrinks, yet the coexistence balance between
algae and rotifer is maintained (Fig. 3 D and E). Finally, in
experiments where the nutrition influx is constantly high (160
μm/l) but a different algae species (Chlorella vulgaris) is used,
we observe an increase in niche difference, with rotifers having a
higher resistance angle than C. vulgaris (Fig. 3 D and E).
Application to observational time-series data of natural communi-
ties. As a second real-world application of our approach on com-
paratively noisy data and a community with multiple species, we
use high-frequency (daily) time-series data from Lake Greifensee,
Switzerland. The data were collected by automated underwater
imaging between March 2019 and June 2023 (32). We applied
the LV map to five phytoplankton guilds, namely Cyanobacteria,
Green algae, Chrysophytes, Diatoms, and Cryptophytes (Fig. 4).
For tractability in the interpretation of the results, which aim to

represent a case application of our method, we intentionally chose
a horizontal subcommunity of the main phytoplankton groups.
Therefore, the per capita interspecific interactions combine direct
and indirect interactions, such as apparent competition due to
a common predator (34), exploitative competition for common
resources (35, 36), or indirect facilitation (36). Consequently, the
inferred intrinsic growth rates and per capita interactions have
to be interpreted within this trophic level. Here, we present the
results using the state-space weighting kernel. Additional results
can be found in SI Appendix, section 10.

The inferred intrinsic growth rates of the phytoplankton guilds
are mostly positive and vary across taxa, with Cyanobacteria and
Green algae having lower r than the other guilds (SI Appendix,
Fig. S42). This suggests that Cyanobacterial growth in the
absence of the other phytoplankton may be quite slow in nature.
We note that intrinsic growth rates of all guilds change over time,
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as expected, due to fluctuating environmental conditions such
as temperature, light, and resource availability. Particularly, the
lowest values of r are generally evident at the end of spring and
summer, suggesting potential nutrient limitations, particularly
phosphorus availability.

Focusing on the Cyanobacteria as a case study, given their role
in harmful algal blooms that severely affect ecosystem services and
economies (37), we find that their growth rate (which underpins
bloom formation) is mediated by diverse and time-varying
interactions with other phytoplankton guilds (SI Appendix,
Fig. S42). The per capita interactions show temporal fluctuations
that can be reconciled with seasonal environmental variations, as
expected in a dynamic system (SI Appendix, Figs. S42–S44).
The interspecific interactions are often weaker than intraspecific
interactions (the negative density-dependent response of the
per capita growth rates of one species on itself), as expected.
This aligns with previous studies suggesting that most ecological
interspecific interactions tend to be weak (19). In some cases, we
observe positive interactions, indicating that some guilds may fa-
cilitate the growth of the others. These results are consistent with
other studies (38, 39). Our results suggest that Green algae and
Chrysophytes facilitate Cyanobacterial growth in winter/spring
and summer/autumn, respectively. Cyanobacterial interaction
with Diatoms seems weak, while Cryptophytes predominantly
exhibit negative interaction, suggesting a potential role as natural
enemies-likely due to competition or predation linked to their
mixotrophic behavior (40). Note that the strength and sign of
inferred interactions need to be interpreted with caution, as the
CIs are wide. Moreover, these interactions encompass direct and
indirect effects, as we study a horizontal subcommunity.

The inferred niche difference between taxa experiences a
decrease in winter, when environmental conditions are not
favorable for the growth of the autotrophs (Fig. 4). This suggests
that stressful conditions, such as low-temperature and scarce
resources, lower the likelihood of coexistence. Regarding the
resistance angles, Diatoms are the most vulnerable to pertur-
bation throughout the four years, followed by Cyanobacteria,
except during cyanobacterial bloom and winter period where
cyanobacteria’s resistance angle decreases significantly. This result
indicates that the cyanobacterial bloom disturbs the coexistence
balance. In addition, during bloom events, cyanobacteria reach
an unstable peak of densities which makes them prone to
extinction due to disturbance. Although the variations are
substantial, such patterns in niche difference and resistance
angles occur consistently four times during the observational
period, suggesting that these phenomena are not random. This
information may provide us with the knowledge to anticipate or
control harmful cyanobacterial blooms.

These patterns are novel to the field of cyanobacterial ecology,
since our knowledge of their interactions with other phyto-
plankton come from laboratory experiments (mostly focused
on competitive dynamics) with a limited range of (cultivable)
taxa and often nonrealistic environmental conditions (37, 41).
Our results represent important hypotheses to test in follow-up
studies in relation to cyanobacterial blooms—these events are
becoming more and more common worldwide, they are difficult
to predict and generally explained as a function of only abiotic
environmental drivers (37).

Discussions

This article presents a method to quantify coexistence metrics by
inferring intrinsic growth rates and per capita interactions. These
ecological parameters dictate the ecoevolutionary dynamics of

communities, whereas the coexistence metrics determine the
likelihood of species coexistence and the resistance of species to
perturbation. Notably, our approach enables the exploration of
their temporal variation, which is crucial when examining the
impact of environmental modifications, such as global warming
or habitat fragmentation. Indeed, when the environment
changes, it is highly probable that the intrinsic growth rates
and/or the per capita interactions also change, thereby affecting
coexistence conditions.

We show that the niche difference, which indicates the likeli-
hood of coexistence, varies across different environmental condi-
tions. Indeed, results from observational data suggest an expected
correlation between variation in niche differences and seasonal
patterns. Moreover, the coexistence balance also varies, such that
species who strongly resist perturbation in one environmental
condition could indeed become more prone to extinction in an-
other. The coexistence balance mainly perturbs during the period
of algal bloom and under stressful environments, such as during
winter with low temperatures and limited food availability. No-
tably, the inferred negative interactions of Chrysophytes on Di-
atoms as opposed to their positive effect on Cyanobacteria suggest
a causal link to cyanobacteria blooms. This to-be-tested hypoth-
esis offers valuable insights for managing these harmful events.

Another important result is the detection of allocative trade-
offs between intrinsic growth rates and the per capita interaction
strength, which essentially determines ecoevolutionary outcomes.
In fact, coexistence status can change as evolutionary processes
direct within-species variations of intrinsic growth rates and per
capita interactions (42, 43). We show that fast-growing clones
exhibit higher intraspecific competitions and are more likely to
be eaten by predators than slow-growing ones, i.e., there is a
trade-off between growth versus competition and defense. We
thus expect the LV map to provide more in-depth insights into
underlying evolutionary processes.

In this work, we focus on the structural approach to coexistence
theory. However, various frameworks may benefit from the LV
map approach. Indeed, knowing the intrinsic growth rate and
interactions also allows the use of modern coexistence theory
(2, 26) and the study of community assembly (27).

LV map, like S-map, uses a multivariate regression approach
weighted by the state-space of community dynamics (23, 44).
However, its focus is on understanding ecological mechanisms of
population dynamics, rather than predicting future dynamics or
analyzing chaotic systems, which are common goals of the EDM
framework, including the S-map. In particular, for our purpose,
considering time-lag in our models would result in parameters
that cannot be any more interpreted in terms of intrinsic growth
rates and per capita interactions, the core parameters of most
coexistence theories. We do not include abiotic factors directly
in the model, but since the inference is a function of time, they
are considered implicitly, and could be linked a posteriori to the
inferred parameters.

Like any model, using LV map on empirical data requires
cautious interpretation of parameters. For example, when dealing
with migration, the inferred ri(t) may not accurately represent
intrinsic growth due to incorporating both emigration and im-
migration. Strong age or sex structuring in a population can also
complicate parameter interpretation. Furthermore, the choice
of weighting kernels is crucial, depending on the study’s focus
and ecological knowledge. For instance, both kernels perform
equally well under constant environmental conditions, as shown
in synthetic and experimental data. However, if the environment
changes and population state-space partially overlaps (as in
synthetic data), the time weighting kernel performs better.
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Conversely, in the lake data, where seasonal fluctuations are
strongly linked to different population abundances in the state-
space, the state-space weighting kernel may be more appropriate.

Our method requires high-frequency time series of population
abundances, which can be obtained in several systems (45–47).
This may be a challenge for annual systems (15), which
requires data collection over hundreds of years. Our methodology
currently benefits systems with organisms with sufficiently short
lifespan, allowing for sufficient data points to render credible
inference. If data is too sparse, population changes do not
accurately reflect per-capita growth, leading to misrepresenta-
tion of intrinsic growth rates and per capita interactions, as
in previous studies (44). However, such data is increasingly
available, especially for microbial communities (45–47) and,
more importantly, these systems can be studied in their natural
environment.

Overall, our approach offers a promising solution to addressing
ecological and evolutionary questions, enabling the study of
organisms in their natural context. Inferring coexistence metrics,
intrinsic growth rates, and per capita interactions, constitutes
a powerful toolbox for gaining greater insights into ecological
dynamics. Furthermore, it allows the use of time-series data from
a range of natural and experimental communities. This feature
will enhance our understanding of how species, phenotypes, or
genetic lineages coexist in complex ecosystems, thereby unveiling
mechanisms governing biodiversity, and addressing phenomena
that are ecologically and economically relevant, such as cyanobac-
terial bloom. Given the increasing amount of time-series data
being collected worldwide across systems (45–47), the broad
applicability of this approach should help improve our overall
understanding of the changing dynamics of ecosystems in our
increasingly changing world.

Materials and Methods

Mechanistic Basis of Parameter Inference—the Lotka–VolterraMap. The
LV map is firmly grounded on well-known ecological mechanisms, where
population dynamics are governed by the birth and death of individual
organisms. A key metric for monitoring changes in population sizes is naturally
the per capita rate of change, which is the difference between the per capita
birth and death rates (7, 8).

From a mathematical standpoint, in a community of S populations (which
could be at the species, guilds, taxon, phenotypic, or genotypic levels), the
changes in population densities are represented by their per capita rates, which
are given by the log-ratio of population density changes: ln(ni(t+1)/ni(t)) =
�i(n(t), e(t)) (7, 9). This per capita rate depends on all biotic and abiotic factors,
represented respectively by the population densities n(t) and environmental
conditionse(t). These dependencies are incorporated in the two key parameters:
the intrinsic growth rate and the per capita interaction strength (7, 9, 48).
The former represents the intrinsic growth of a population in the absence of
limitations, represented as the per capita rate of change when population
densities are extremely low, that is, ri(t) = �(0, e(t)). The latter refers to
the regulation by both inter- and intraspecific per capita interactions, which is
represented by the partial derivative of the per capita rates of change, �ij(t) =

∂�i(n(t), e(t))/∂nj(t). With population densities recorded in time series,
for each time point, we can approximate the per capita rates of change by a
multivariate function of these population densities as follows:

ln
(
ni(t + 1)
ni(t)

)
= ri(t) +

S∑
j=1

�ij(t) · nj(t) i = 1, . . . , S. [1]

In this equation, the intercepts correspond to the intrinsic growth rates, while
the slopes represent the per capita interaction strengths (9, 12, 19, 20). Eq.1 is, in
fact, similar to the multispecies time discrete Lotka–Volterra model, with one sub-
tle but fundamental difference—we do not assume constant values for ri(t) and

�ij(t). Thisrequiresaweightingparameter� thatdetermineshow ri(t)and�ij(t)
varywithtime.Notethat theweightingkernelcanbebasedonstate-spaceortime.
The state-space weighting kernel depends on the similarity of population density
values, whereas the time weighting kernel depends on the temporal proximity of
the population densities (SIAppendix, section 1). LV- map, therefore, is not simply
a multivariate regression because parameter inference is performed at each time
point of the time series, i.e., a local linear regression with weighing kernel, which
enables the detection of potential time variations in these parameters (49). It
should also be noted that this model is alike a multispecies Ricker model (8),
allowing any sign of interaction, and the parameters being time-dependent.

Structural Coexistence Metrics. The structural metrics of coexistence aim
at quantifying the likelihood of coexistence and resistance to environmental
perturbation (4, 6). Those metrics are rooted in the so-called domain of feasibility.
The domain of feasibilityDf is the set of intrinsic growth rate vectors r leading to
the existence of a strictly positive (feasible) equilibrium n∗ = (n∗1 > 0, n∗2 >

0, ..., n∗S > 0). We can show that this set is the convex hull generated by
the strictly positive liner combinations of the column vectors determining the
interaction matrix (with a negative sign) (4, 6, 35, 50):

� =

 | | |

−v1 −v1 · · · −vS
| | |


and

Df =
{
r = a1 · v1 + aS · vS|a1, . . . , aS > 0

}
. [2]

Geometrically, this domain of feasibility is a cone that is, therefore, called the
cone of feasibility. It is represented in green on panel (C) of Fig. 1 and panels
(E and F) of Fig. 2, in dimension 3 (i.e., for 3 populations). Then the structural
metric of niche difference  is given by the solid angle of the feasibility cone,
which quantifies the likelihood of coexistence, i.e., a wider cone implies a larger
set of r leading to coexistence. The structural measure of resilience for species
i is the angle �i between the vector r and the border of the feasibility domain at
which this species becomes extinct. Those angles are illustrated by the gray arc
of circles. A smaller resistance angle for species implies being more vulnerable
to perturbations. Note that this approach to coexistence does not assume
the sign of the interactions to be constrained to negative, i.e., competition
interaction, and can, therefore, be applied to any type of interaction. For
additional information and how to compute  and the �j, we refer the reader
to SI Appendix, section 1, and to the following refs. 4 and 6.

Data, Materials, and Software Availability. R code and csv data have
been deposited in Figshare (DOI: 10.6084/m9.figshare.25574679). Previously
published data were used for this work (The experimental time-series data from
Blasius et al. (30) were obtained from open-source data shared by the authors
onFigsharehttps://doi.org/10.6084/m9.figshare.10045976.v1.Thetime-series
experimental data from Yoshida et al. (31) were obtained using PlotDigitizer
app https://plotdigitizer.com/app. The observational lake data are available at:
https://doi.org/10.25678/000C2G).
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