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Understanding the effects of evolution on emergent population properties such as 
intrinsic growth rates, species abundances or resilience is not only a key theoretical 
question, but has major empirical implications, for instance in conservation, agroecol-
ogy and invasion ecology. Evolution can also lead to polymorphism based on niche dif-
ferentiation among different phenotypes. The present article has three aims. First, we 
clarify the evolutionary scenarios allowing for optimization of population growth rate 
and abundance. Second, we relate the eco-evolutionary emergence of polymorphism to 
the niche-overlap and fitness-ratio sensu coexistence theory. Third, we discuss whether 
properties of polymorphic populations can be optimized due to niche-displacement 
among phenotypes. We revisit previous theoretical results on eco-evolutionary opti-
mization and link them with our Lotka–Volterra framework. Depending on how the 
traits under selection affect species intrinsic growth rates or ecological interactions, 
we uncover three scenarios, ranging from the optimization of all three properties to 
no optimization and link evolutionary dynamics to coexistence theory. Optimization 
is, in general, incompatible with niche differentiation sensu coexistence theory and, 
therefore, with the emergence of polymorphism. Niche displacement between resident 
and mutant phenotypes, and potentially polymorphism, only arise when we do not 
expect optimality to hold. Finally, we show how our approach can be generalized to 
coevolutionary scenarios. In the discussion, we propose biological scenarios and traits 
that may fall into our three scenarios. Although it is possible to find traits for which 
optimality is expected, for the majority of the cases optimization arguments do not 
hold. We also provide practical applications of our results in conservation, agroecology, 
harvesting and invasion ecology.

Keywords: adaptive dynamics, branching point, coexistence theory, K-selection, life 
history traits, polymorphism

Introduction

Recently, empirical results have accumulated, suggesting that evolution can often 
impact the dynamics of ecological systems, even on short timescales (Hairston et al. 
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2005). As a result, we may have to account for such evolu-
tionary phenomena to properly predict or manage the effects 
of current global changes (Carroll et al. 2014, Urban et al. 
2016), to manage exploited species (Allendorf et al. 2008) 
or agricultural systems (Hendry et al. 2011, Loeuille et al. 
2013). Understanding the ecological consequences of evolu-
tion requires a non-trivial change in scale, from genes and 
individuals to populations and ecosystems. Natural selec-
tion builds on differences in fitness components of differ-
ent genotypes. How such individual-level differences scale 
up to influence the fate of populations is already quite a 
difficult question. While evolution may enhance popula-
tion persistence by fostering adaptation (e.g. evolutionary 
rescue, Gomulkiewicz and Holt 1995), it may also lead to 
the fixation of traits that decrease population size or even 
lead to extinctions (Webb 2003). Eco-evolutionary dynam-
ics also alter ecological properties at even larger scales, affect-
ing community structure (e.g. competitive hierarchies, De 
Meester et al. 2002) and ecosystem functioning (e.g. the 
strength of trophic cascades and nutrient recycling processes, 
Loeuille and Loreau 2004, Bassar et al. 2010).

Evolution has often been construed as positive for the 
evolving population. Statements on evolution happening ‘for 
the good of the species’ have been common, giving the impres-
sion that evolution optimizes various aspects of population 
properties (e.g. its abundance or productivity). Many mod-
els in evolutionary biology support this view. This may come 
from a strong focus on adaptation compared to other evolu-
tionary processes, and from the fact that frequency depen-
dence is often disregarded. As explained in Dieckmann and 
Ferrière (2004), many quantitative genetic models are based 
on ad-hoc fitness functions that ignore frequency-dependent 
selection and such too simplistic models often lead to an evo-
lutionary outcome that optimizes intrinsic growth rate r or 
reproduction ratio R0. Similar ideas of optimization have also 
been proposed at even larger scales, from ecosystems, where 
some works have proposed evolution toward optimal states 
(Odum and Barrett 1971), even at very large scales (Lovelock 
and Margulis 1974, Lenton 1998). In recent years, however, 
several works have shown that evolution only rarely opti-
mizes systems at any of these scales. Dieckmann and Ferrière 
(2004) discuss how frequency dependence naturally emerges 
from the ecological context and will most often lead to evo-
lutionary outcomes that do not optimize population charac-
teristics. Mylius and Diekmann (1995) are the first, to our 
knowledge, showing that depending on how the frequency 
and density dependence act on the invasion fitness, evolu-
tion could optimize the basic reproductive number R0 or the 
intrinsic growth rate r. Metz and collaborators (Metz et al. 
2008, Metz and Geritz 2016, Lion and Metz 2018) formal-
ized this theory and provided necessary and sufficient condi-
tions for evolution to optimize based on the decomposition 
of the invasion fitness into traits and environmental variation 
(see corollary 3.4 in Metz and Geritz 2016).

To better understand the link between evolution and vari-
ous ecological properties, one possibility is to understand the 
variations in the mean phenotype, and to explicitly account 

for their impacts on the ecological dynamics. Evolution can 
also lead to character displacement within the population and 
to the long-term maintenance of polymorphisms (Doebeli 
and Dieckmann 2000, Leimar 2005). Considering the mean 
phenotype is then no longer relevant. As character displace-
ment occurs, due to disruptive selection, different phenotypes 
exploit different niches. This not only limits competition 
and related losses, but also leads to higher complementarity 
in resource use. These two components can act in synergy 
to allow higher abundances or productivity to be reached. 
Therefore, when niche displacement occurs, we expect some 
population characteristics to be positively affected, as compe-
tition is relaxed.

The optimization principle developed by Metz and col-
laborators (Metz et al. 2008, Metz and Geritz 2016, Lion 
and Metz 2018) is a general mathematical theorem deter-
mining the form of the invasion fitness such that evolution 
optimizes a population property (their theorem is a necessary 
and sufficient condition). Now, it remains unclear how these 
mathematical conditions translate into which biological traits 
can be expected to lead to optimization or non-optimization 
and which population property is optimized or not. In this 
article, we aim at revisiting the optimization principle within 
the concrete ecological dynamics given by the Lotka–Volterra 
formalism. Moreover, a corollary of the optimization princi-
ple is that optimization is incompatible with the maintenance 
of polymorphism (Metz et al. 2008, Metz and Geritz 2016, 
Lion and Metz 2018) and, therefore, typically not associated 
with biodiversity. From the perspective of coexistence theory 
(Chesson 1990, Saavedra et al. 2017), the maintenance of 
biodiversity is constrained by niche overlap and fitness ratio. 
So, there must be a fundamental link, which still needs to 
be uncovered, between the optimization/non-optimization 
and the niche overlap and fitness ratio. Finally, when evolu-
tion leads to branching events, niche displacement occurs. 
While competition should be relaxed, it is unclear whether a 
population property that is necessarily not-optimized before 
branching, could be optimized after it because of the niche 
displacement. We will explain how the optimization princi-
ple could be generalized to polymorphism co-evolution.

In this article, we use an explicit Lotka–Volterra model 
describing ecological dynamics. That is, ecological dynamics 
are here the results of the intrinsic growth rate and of eco-
logical interactions. In turn, both the intrinsic growth rate 
and the ecological interactions depend on evolving traits. 
We start by disentangling scenarios leading to the optimiza-
tion of the three following emergent population properties: 
population intrinsic growth rate, its standing abundance and 
its resilience. We provide a classification into three scenarios, 
ranging from the optimization of all three properties, optimi-
zation of the abundance only and finally non-optimization. 
Biological traits that would fit the different scenarios are pro-
posed in the discussion. Then, we apply tools of coexistence 
theory to our three scenarios and relate optimization/non-
optimization properties to niche differentiation and fitness 
ratio (sensu coexistence theory). To demonstrate whether the 
optimization of a population property occurs, we directly 
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relate the fitness gradient, i.e. the direction of evolution, to 
the derivative of this population property, i.e. the direction 
of change in the population properties. This is, we provide 
a gradient-based approach to the optimization principle of 
Metz and collaborators (Metz et al. 2008, Metz and Geritz 
2016, Lion and Metz 2018). Subsequently, we explain how 
our findings relate to Metz and collaborators’ general math-
ematical theory. Finally, we explain how our formalism can 
be used for other emergent properties and explore the co-
evolution of two phenotypes after a branching point. From 
this, we suggest how the optimization principle could be gen-
eralized to polymorphism co-evolution, and how it can be 
proven by a gradient-based approach.

When does evolution optimize emergent 
population properties?

The first emergent property we study is the intrinsic growth 
rate r, the per capita growth rate when the population abun-
dance tends to zero. The second is the abundance at equi-
librium N∗. The third is resilience (λ) defined as the return 
rate to equilibrium after small perturbations in abundance. 
In the polymorphic case resilience is given by the real part 
of the leading eigenvalue of the Jacobian matrix, while in 
monomorphic situations it simply reduces to the phenotype 
intrinsic growth rate. We analyze eco-evolutionary dynamics 
and optimization using adaptive dynamics techniques, sum-
marized in Box 1.

Scenario 1. Optimization of all three emergent 
population properties

As a first study case, we consider ecological dynamics follow-
ing the classical Verhulst model. We assume that only the 
Malthusian intrinsic growth rate r(x) > 0 is a function of the 
adaptive trait x. Population dynamics of trait x then follow:

dN
dt

N r x N= ´ ( ) - ´( )a   (2)

where parameter α > 0 is the intraspecific competition. In 
this simple population model, the invasion fitness of a rare 
mutant xm in a resident population at ecological equilibrium 
N∗(x) = r(x)/α is given by

w ax x r x N xm m, *( ) = ( ) - ´ ( )   (3)

We aim at directly relating the direction of evolution (i.e. the 

fitness gradient ¶ ( )( ) ¶( ) =( )w x x xm m x xm
, / | ) to the variations 

of the abundance (dN∗(x)/dx) and of the intrinsic growth rate 
(dr(x)/dx) – our gradient-based approach to the optimiza-
tion principle. In this first scenario, note that (Supporting 
information):

¶ ( )
¶

=
( )

= ´
( )

=

w
a

x x

x

dr x

dx

dN x

dx
m

m
x xm

,
|

*

  (4)

Because singular strategies nullify the fitness gradient (Box 
1), Eq. 4 shows that they correspond to local maxima or 
minima in abundances and intrinsic growth rates (zeros of 
the intrinsic growth rate and abundance derivative). Outside 

Box 1. Adaptive dynamics

In adaptive dynamics, the direction of evolution is 
determined by variations of the invasion-fitness func-
tion ω(xm,x), computed as the per capita growth rate of a 
rare mutant xm in a resident population x at its ecological 
equilibrium N∗(x) (Metz et al. 1992, Geritz et al. 1998). 
The mutant xm can invade if its invasion fitness is posi-
tive. Assuming small mutations, evolutionary changes 
are then proportional to the fitness gradient assessed at 
the resident phenotype, and can then be approximated 
by (Dieckmann and Law 1996):

dx
dt

N x
x x

x
m

m
x xm

= ( ) ´
¶ ( )

¶ =
1
2

2ms
w

*
,
|   (1)

The term µσ2N∗(x) encapsulates the phenotypic variabil-
ity brought by the mutation process on which selection 
acts, as µ corresponds to the per capita mutation rate and 
σ2 to the phenotypic variance associated with a muta-
tion event. The last term – the partial derivative of the 
invasion fitness – defines the fitness gradient that gives 
the direction of evolution. When the gradient is positive 
(respectively negative), larger (respectively smaller) val-
ues of the trait are selected. Evolutionary singular strate-
gies correspond to the roots of the fitness gradient, i.e. 
when the gradient is null.
Evolutionary singular strategies can be either convergent 
(in which case local evolutionary trajectories will con-
verge to the strategy) or divergent (in which case natu-
ral selection favours strategies away from the singular 
strategy). They can also be invasible by nearby mutants, 
or non-invasible (ESS). Convergence and invasibility of 
singular strategies can be investigated using the second 
derivatives of the invasion fitness, assessed at the singu-
larity (Dieckmann and Law 1996, Geritz et al. 1998). 
Evolutionary singular strategies that are convergent and 
non-invasible are called continuously stable strategies 
(CSS). They correspond to endpoints of evolution. In 
turn, a strategy that is convergent and invasible defines a 
branching point and leads to the emergence of polymor-
phism. Non-convergent strategies correspond to repel-
lor or Garden of Eden (whether they are invasible or 
non-invasible, respectively), and evolution moves away 
from those points.
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of equilibria, along evolutionary dynamics, Eq. 4 implies that 
evolution continuously increases intrinsic growth rates and 
abundances. Therefore, evolution selects phenotypes with 
larger intrinsic growth rates, dynamical resilience (which 
in this case equals the intrinsic growth rate λ(x) = r(x)) and 
abundances. CSSs correspond to local maxima in these emer-
gent population properties, while repellors correspond to 
local minima (proof in the Supporting information).

Figure 1 illustrates this first scenario for two generic 
intrinsic growth rate functions. (A) and (D) show evolu-
tionary trajectories, while (B) and (E) show corresponding 
pairwise invasibility plots (PIPs). PIP plots show in grey, for 
a given resident phenotype on the x-axis, the set of mutant 
phenotypes, y-axis, that can invade it. They show the posi-
tions of evolutionary singularities (at the intersection of the 
diagonal and the zero fitness contour) and allow to graphi-
cally determine whether these strategies are convergent or 
divergent, invasible or non-invasible (Dieckmann and Law 
1996, Geritz et al. 1998). For clarity, we report the direction 
of evolution determined from the PIP on (C) and (F). (C) 
and (F) show how the value of phenotype affects emergent 

ecological properties. In both examples, evolution optimizes 
all emergent properties. The result applied whether singular 
strategies exist ((A)–(C)) or not ((D)–(F)). Computations are 
detailed in the Supporting information.

Scenario 2. Optimization of abundance only

As a second study case, we consider that both the intrinsic 
growth rate, r(x) > 0, and the intraspecific competition α(x) 
> 0 of Verhulst’s model depend on phenotype x. The invasion 
fitness of a rare mutant xm in a resident population at ecologi-
cal equilibrium N∗(x) = r(x)/α(x) is given by:

w ax x r x x N xm m m, *( ) = ( ) - ( ) ´ ( )   (5)

As shown in the examples of Fig. 2, evolution no longer opti-
mizes the intrinsic growth rate and the dynamical resilience, 
but still optimizes the abundance. This is demonstrated fol-
lowing the same rationale as for the first scenario, i.e. try-
ing to relate the fitness gradient to the abundance and the 

Figure 1. Two examples of eco-evolutionary dynamics leading to the optimization of intrinsic growth rates, abundances and dynamical 
resilience. (A) and (D) show the evolutionary trajectories, while (B) and (E) show corresponding PIP plots. On a PIP plot the area is grey, 
if for a given resident phenotype on the x-axis, the set of mutant phenotypes, y-axis, that can invade it. (C) and (F) show how the three 
emergent ecological properties change along phenotypic variations. Evolutionary singular strategies are in red, and the black horizontal 
arrows show the direction of evolutionary trajectories. (A)–(C) assume that growth rates r x r x rm o r( ) = ´ - - ´( )( )( )exp ) /2 22 s , are optimal 
when x = ro (here rm = 2, ro = 2, σr = ½). (D)–(F) assume growth rates to be a monotonically increasing and saturating function of the phe-
notype r(x) = rm·x/(hr + x) (rm = 2, hr = 0.5, α = 2).
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intrinsic growth rate derivative. This can be written in two 
ways (Supporting information):

¶ ( )
¶

=
( )

-
( )

´ ( )=

w x x

x

dr x

dx

d x

dx
N x

m

m
x xm

,
| *

a
  (6)

or

¶ ( )
¶

= ( ) ´ ( )
=

w
a

x x

x
x

dN x

dx
m

m
x xm

,
|

*

  (7)

Equation 6 shows that (unless dα(x)/dx = 0 for all x, which 
would be in contradiction with our assumption that α(x) is a 
function of x) evolution does not optimize intrinsic growth 
rate (and dynamical resilience). The second equality (Eq. 
7) demonstrates that evolution still selects phenotypes with 
larger equilibrium abundances. As in the first study case, 
we can further demonstrate that singular strategies can only 
be convergent and non-invasible (CSS) or divergent and 

invasible (a repellor). Again, CSSs correspond to local max-
ima in population abundances, while repellors correspond to 
local minima (proof in the Supporting information).

Figure 2 illustrates this scenario and highlights how evolu-
tion optimizes abundances, but not intrinsic growth rates or 
dynamical resilience. Emergent properties of the system are 
then traded off along evolutionary dynamics, as it is certainly 
possible in these situations to get a highly productive sys-
tem that has a low resilience (e.g. (F)). The argument applies 
whether singular strategies exist ((A)–(C)) or not ((D)–
(F)). Mathematical details are provided in the Supporting 
information.

Scenario 3. Non-optimisation

We now consider that the competition strength between 
mutants and residents depends on both traits x and xm, i.e. 
α(xm,x) for the competitive effect of a resident x on a mutant 
xm. Therefore, the invasion fitness of a rare mutant xm in a resi-
dent population at ecological equilibrium N∗(x) = r(x)/α(x,x) 
is given by

Figure 2. Two examples of eco-evolutionary dynamics leading to the optimization of abundances only. (A) and (D) show the evolutionary 
trajectories, while (B) and (E) show the corresponding PIP plots. (C) and (F) show how the three emergent ecological properties change 
along phenotypic variations. Evolutionary singular strategies are in red, and the black horizontal arrows show the direction of evolutionary 
trajectories. (A)–(C) assume r(x) = rm × x/(hr + x) and α(x) = α0 × xδ (rm = 2, hr = 1/2, αo = 1, δ = 0.4). (D)–(F) assume r(x) = rm × exp (−λrx) 
and α(x) = αm × exp (−λαx) (rm = 1, λr = 1, αm = 0 and λα = 1.1).
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w ax x r x x x N xm m m, , *( ) = ( ) - ( ) ´ ( )   (8)

We now get (Supporting information):

¶ ( )
¶

=
( )

-
¶ ( )

¶
´ ( )= =

w x x

x

dr x

dx

x x

x
N x

m

m
x x

m

m
x xm m

,
|

,
| *

a
  (9)

and

¶ ( )
¶

= ( ) ´ ( )
-
¶ ( )

¶
( )´= =

w
a

ax x

x
x x

dN x

dx

x x

x
N x

m

m
x x

m
x xm m

,
| ,

,
|

*
*   (10)

The first Eq. 9 is similar to Eq. 6 of the second scenario. 
Excluding the particular case where ¶ ( ) ¶ ==a x x xm m x xm

, / | 0  
for all x, evolution no longer favours larger intrinsic growth 
rates (and dynamical resilience). Given the second equal-
ity (Eq. 10), unless we are in the particular case that 

¶ ( ) ¶ ==a x x xm x xm
, / | 0  for all x, evolution does not opti-

mize abundance either.
Figure 3 illustrates this case, assuming that phenotypes 

compete asymmetrically for resources (as in Kisdi 1999). 
Depending on parameter values, the system can reach a 
CSS ((A)–(C)) or an evolutionary branching ((D) and (F)) 
(Kisdi 1999). Whether the singular strategy (red dot) is 
a CSS or a branching can be visualized on the PIP plots 
((B) and (E)). In (B), above and below the red dot the 
area is white, meaning that the mutant phenotype can-
not invade, which implies a CSS. In contrast in (E), the 
area above and below the red dot is grey, so that nearby 
mutants can invade, which implies a branching point 
(Geritz et al. 1998). Consistent with the previous analy-
sis (Eq. 9 and 10), none of the population properties are 
maximized. Computations of evolutionary singular strate-
gies, their convergence and invasibility properties are given  
in Kisdi (1999).

Figure 3. Two examples of eco-evolutionary dynamics illustrating the non-optimisation of abundances, intrinsic growth rate and dynamical 
resilience. (A) and (D) show the evolutionary trajectories, while (B) and (E) show the corresponding PIP plots. (C) and (F) show how the 
three emergent ecological properties change along phenotypic variations. Evolutionary singular strategies are in red, and the black horizon-
tal arrows show the direction of evolutionary trajectories. The competition model is given by: r x r x rm o r( ) = ´ - -( )( )exp ) /2 22s  and the 
competition between two phenotypes x and y is given by a nx y c k x y, /( ) = ´ - + ´ - ´ -( )( )( )( )1 1 1 exp , so that competition is asymmetric, 
favouring higher phenotypic values (Kisdi 1999). (A)–(C) assume rm = 1, ro = 0, σr = 1, c = 1, k = 1.4 and ν = 1; while (D)–(F) assume rm = 1, 
ro = 0, σr = 1, c = 1, k = 2.4 and ν = 1. Note that evolutionary dynamics in (D) will eventually lead to branching (shown on Fig. 4A).
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Contrary to the previous two scenarios, convergence and 
invasibility are not simply related. Instead, all types of sin-
gular strategies are possible, in particular branching points. 
At such branching points, disruptive selection leads to the 
emergence of polymorphism (Fig. 3D–F). In such cases, trait 
displacement occurs among individuals of the population, 
niche differentiation (sensu the coexistence theory) between 
two coevolving phenotypes progressively appears, and the 
system eventually settles at a coalition of two CSSs (Kisdi 
1999). Such a divergence decreases competition between 
increasingly contrasted phenotypes (limiting similarity, 
see MacArthur and Levins 1967). This will be studied in 
‘Polymorphism coevolution after branching’ section.

Relating evolutionary dynamics to 
coexistence theory

We now investigate the link between the evolutionary out-
comes of these three scenarios and coexistence theory. From 
an ecological perspective, the resident-mutant dynamics can 
be considered as a special case of classical models of two com-
peting species. Following the framework of coexistence the-
ory, niche-overlap (ρ) and fitness-ratio (κ) metrics between 
the two phenotypes can then be assessed (Chesson 1990, 
Saavedra et al. 2017). Noting ri the intrinsic growth rate of 
phenotype i and αi,j the competitive effect of j on i, we get:

r
a a

a a
k

a a

a a
= =m r r m

r r m m

r

m

m m m r

r r r m

r
r

, ,

, ,

, ,

, ,

and   (11)

As detailed below, in our two first scenarios, Eq. 11 leads to 
ρ = 1, indicating a full niche overlap (no niche difference). 
The mutant then fails invading if κ > 1, while it replaces the 
resident if κ < 1. In the more general case (third scenario), 
we get ρ < 1. This indicates that overlap is now imperfect, i.e. 
a certain degree of niche differentiation. The mutant and the 
resident phenotypes can coexist provided that:

1
r

k r> >   (12)

If the first inequality fails, the resident excludes the mutant, 
while if the second inequality fails the mutant replaces the 
resident.

Consequently, coexistence theory implies that if there is 
no niche difference between the resident and the mutant 
(ρ = 1), coexistence between both phenotypes and, therefore, 
emergence and maintenance of polymorphism (through evo-
lutionary branching) is not possible. Given niche differentia-
tion (ρ < 1), the two phenotypes can potentially coexist and, 
therefore, a branching point is possible.

In the first scenario, interactions among residents and 
mutants do not depend on traits so that αi,j = α and ρ = 1. 
Therefore, either the mutant replaces the resident or fails to 

invade depending on κ. As Κ = r(x)/r(xm), evolution system-
atically selects mutants with larger intrinsic growth rates (and 
higher abundances since N∗(x) = r(x)/α, and higher resilience 
as λ(x) = r(x)).

In the second scenario, interactions among resident and 
mutant αi,j depend on phenotype i so that αr,m = αr,r = α(x) and 
αm,r = αm,m = α(xm). Again ρ = 1, either the mutant replaces the 
resident or it fails to invade. Fitness difference now equals 
Κ = r(x)/r(xm) × α(xm)/α(x) = N*(x)/N*(xm). Consequently, 
evolution selects mutants with larger abundances, i.e. evolu-
tion optimizes N∗ only, but has no systematic effect on the 
intrinsic growth rate and resilience.

In the third scenario, the niche overlap is given by

r =
( ) ( )
( ) ( )

a a

a a

x x x x

x x x x
m m

m m

, ,

, ,
  (13)

When ρ < 1, meaning that competition among similar 
phenotypes is higher than between different phenotypes, 
coexistence is possible (as long as the inequalities (Eq. 12) 
are satisfied), hence the maintenance of polymorphism. 
Moreover, the fitness ratio is given by

k =
( )

´
( ) ( )
( ) ( )

=
( )
( ) ´

(

r x

r x

x x x x

x x x x

N x

N x

x x

m

m m m

m

m

( )

, ,

, ,

,*

*

a a

a a

a )) ( )
( ) ( )

a

a a

x x

x x x x
m

m m m

,

, ,

  (14)

which implies that evolution will not necessarily increase 
abundances or intrinsic growth rates, as selection of larger 
abundances or larger intrinsic growth rates can be countered 
by the imbalance in competition, i.e, the square root terms 
in Eq. 14.

In summary, there is a fundamental ecological difference 
between the first two scenarios and the third one. The first 
two scenarios, implicitly assume no niche differentiation 
(ρ = 1) between the resident and the mutant phenotypes, 
while in the third scenario, competition has been defined 
such that niche differentiation occurs (ρ < 1) competition 
being a function of the traits of the two interacting popula-
tions. Consequently, in the first two scenarios, evolution can-
not lead to a branching point. The mutant and the resident 
phenotypes cannot coexist for lack of niche differentiation. In 
the third scenario a branching point could occur. Niche dif-
ferentiation is then a necessary condition, but not sufficient 
to obtain a branching. Constraints on fitness ratios (Eq. 12) 
should also be satisfied. Finally, in the case of no niche differ-
entiation, the fitness ratio reveals which phenotype is selected 
by evolution. In scenario 1 it is the phenotype with the larger 
abundance and intrinsic growth rate, while in scenario 2, it is 
the phenotype with larger abundance that is selected.
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Page 8 of 14

Polymorphism coevolution after branching

Figure 3D–F show that when competition depends on both 
the mutant and the resident trait (α(xm,x)), a branching point 
can be possible. After this branching point, Fig. 4 and 5 show 
that two phenotypes coexist and coevolve.

Figure 4 shows how coevolution affects the three emer-
gent properties we consider. (A) shows, as expected, the 
progressive niche separation between the two phenotypes, 
therefore a reduction of their competition. (B)–(D) explore 
whether the three emergent population properties are opti-
mized after the branching. As the niches of the two pheno-
types diverge, total abundance (C) and dynamical resilience 
(D) both increase, but do not reach their potential maxi-
mum. The intrinsic growth rates of both phenotypes diverge, 
but the average growth rate remains approximately constant 
(panel B).

On Fig. 5A and C, the coloured areas define the pro-
tected dimorphism area (i.e. in these areas, phenotypes 2 
can grow when rare in an equilibrium population of pheno-
type 1 and vice versa). Ecologically, these areas correspond 

to pairs of phenotypes that coexist (Kisdi 1999). These 
two panels show that neither the total abundance nor the 
dynamical resilience is optimized after the branching. In 
coexistence theory, these protected dimorphism areas can 
be represented in the fitness-ratio (κ) and niche-overlap 
(ρ) space (see Fig. 2 of Chesson 1990) using Eq. 11 with 
xr = x1 and xm = x2 (Supporting information). The grey area 
on (B) is the projection of the protected dimorphism area 
in the fitness-ratio (κ) and niche-overlap (ρ) space given 
the constraint 1/ρ > κ > ρ (Eq. 12). This panel shows that 
coevolution decreases niche overlap, but interestingly, the 
two phenotypes remain equivalent from a fitness point of 
view (κ = 1).

How our results relate to the optimization 
principles of Metz and collaborators

We now link our gradient-based approach to the mathemati-
cal theorem of Metz and collaborators (Metz et al. 2008, 
Metz and Geritz 2016, Lion and Metz 2018). Following 

Figure 4. Co-evolutionary trajectories past the branching point of Fig. 3D–F. (A) shows the coevolution of the phenotypic traits, it is the 
continuation of Fig. 3 D. (B)–(D) show how evolution affects the intrinsic growth rates, the total abundance and the dynamical resilience, 
respectively. On all panels, the vertical blue dashed lines represent the time of the branching process. On (B)–(D), the horizontal red dashed 
lines give the potential maximum value of the corresponding emergent properties, i.e. the maximum value that could be reached if one 
could choose the value of the phenotypes arbitrarily. On (B), the black dashed line shows how evolution affects the average intrinsic growth 
rate. On (D), the maximum possible dynamical resilience is calculated as the maximum over all pairs of trait values allowing coexistence.
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Page 9 of 14

Metz and Geritz (2016), optimization is expected if and only 
if the invasion fitness can be written as:

w x x f x x x xm m m, ,( ) = ( ) ´ ( ) - ( )( )y y   (15)

with f a function taking only positive values and ψ a function 
of the trait space in the real numbers. In such cases, because 
mutants are selected when their invasion fitness is positive, 
evolution necessarily maximizes ψ (corollary 3.4 in Metz and 
Geritz (2016)).

In our first scenario, the invasion fitness is ω(xm,x) = r(xm) 
− α × N*(x), which can be rewritten as:

w x x r x r x N x N xm m m, * *( ) = ( ) - ( ) = ´ ( ) - ( )( )a   (16)

On the first formulation, we recognize Metz’s criterion for 
ψ = r and f = 1, and on the second formulation for ψ = N∗ 
and f = α. Thus, evolution optimizes r and N∗. The invasion 
fitness of our second scenario reads as ω(xm,x) = r(xm) − α(xm) 
× N*(x), which can be rewritten as:

w x x r x
x

x
r x

x N x N x

m m
m

m m

,

* *

( ) = ( ) - ( )
( )

´ ( )

= ( ) ´ ( ) - ( )( )

a

a

a

  (17)

Thus, evolution optimizes only N∗, but not r (because of the 
ratio of the competition term). Finally, the invasion fitness 
emerging from our third scenario is ω(xm,x) = r(xm) − α(xm,x) 
× N*(x) which cannot be reformulated following Metz and 

Figure 5. Coevolution of the two phenotypes after the branching point of Fig. 3D–F (Fig. 4). The red dot shows the branching point, while 
the black dots show the coalition of phenotypes to which the system converges. Green and blue lines correspond to the coevolutionary 
isoclines, i.e. the set of points at which evolutionary gradients equal zero for phenotype 1 and of phenotype 2, respectively. These two iso-
clines can be either invasible or non-invasible, depending on the sign of the second derivatives of the relative fitness functions. Thick lines 
show non-invasible strategies, while thin lines indicate invasibility. (A) and (C) show the effects of evolution on abundance and resilience. 
The coloured area corresponds to the protected dimorphic area. The colour gradient on (A) gives the total abundance of the two phenotypes 
at ecological equilibrium, while on (C) it stands for the dynamical resilience. (B) shows changes in the fitness-ratio (κ) and niche-overlap 
(ρ) for the two phenotypes along coevolutionary dynamics. (D) shows how coevolution affects intrinsic growth rates.
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Page 10 of 14

collaborators (Eq. 15). We can obtain two equivalent formu-
lations, highlighting either r or N∗:

w x x r x
x x

x x
r x

x x N x
x x

x

m m
m

m m m
m

,
,

,

,
,

*

( ) = ( ) - ( )
( ) ´ ( )

= ( ) ´ ( ) - ( )

a

a

a
a

a mm mx
N x

,
*

( ) ´ ( )
æ

è

ç
ç

ö

ø

÷
÷

  (18)

Consider the second expression, (the same rationale applies 
to the first one). We set f as f(x,xm) = α(xm,xm) and ψ as 
ψ = N∗. The term α(xm,x)/α(xm,xm) remains, which repre-
sents the competitive effect of the resident on the mutant 
relative to the mutant competition on itself. When this ratio 
does not equal 1, niche differentiation exists and evolution 
does not optimize N∗. In this sense, we could reinterpret the 
optimization principle given by Metz’s equation (Eq. 15) in 
the lens of coexistence theory. Optimization holds only if 
there is no niche differentiation between the resident and 
the mutant.

Finally, it is also interesting to draw a parallel with 
the original formulation of the optimization principle 
(Metz et al. 2008), which states that optimization hap-
pens when the resident (assumed to be at its ecological 
equilibrium and thereby defining the environment) acts 
uni-dimensionally and monotonically on the invasion fit-
ness of a rare mutant. Such a criterion needs a clear defini-
tion of the environment and of its dimensionality, which is 
not obvious. In the literature, environment is defined as all 
properties of the resident species, at its ecological equilib-
rium, that influences the invasion fitness function of a rare 
mutant. In the first two scenarios, Eq. 16 and 17 clearly 
show that the resident acts on the invasion fitness through 
its abundance N∗(x), which is therefore a suitable environ-
ment metric. It is clearly unidimensional as N∗ is a positive 
real number, and it acts monotonically on the fitness as an 
increase (decrease) in N∗(x) implies a decrease (increase) of 
ω(xm,x). In the third scenario (the second row Eq. 18, the 
trait of the resident acts on the invasion fitness by changing 
the average abundance N∗(x) defining the competition con-
text for the mutant, but also through changes in α(xm,x) that 
modulates this competition effect. Consequently, the envi-
ronment does not reduce to N∗(x) so that the dimension 
of the environmental feedback is above one. Durinx et al. 
(2008) (their appendix E) suggest that such situations can 
be construed as feedback loops of dimension infinite. Note 
also that in this case, polymorphism is possible. The rela-
tionship between the dimension of the environmental feed-
back loop, coexistence and branching events has also been 
pointed (Meszena and Metz 1999). The dimension of the 
environmental feedback loop offers an upper bound to the 
total diversity, ie, the number of phenotypes after successive 
branchings is strictly inferior to this dimension, which is 
coherent with the results proposed here.

A gradient-based approach to the 
optimization principle

The aim of this section is to provide a general framework to 
our gradient-based approach. First, we show how the Eq. 4, 7 
and 10 of the three studied scenarios can be framed within a 
common framework for monomorphic populations. We then 
explain how it can be generalized to polymorphic coevolution.

In the monomorphic case, we define two classes of inva-
sion fitness function:

class I w x x f x P xm
I

m, , *( ) = ( )( )  (19)

class II w x x f x x P xm
II

m, , , *( ) = ( )( )  (20)

where P*(x) is a real number representing a property of inter-
est of a population of trait x at the ecological equilibrium of 
the population. In our three scenarios, we used the emergent 
population properties that are the intrinsic growth rates r(x) 
and the abundance N*(x). The main difference between these 
two classes is the dimension of the environmental feedback 
loop sensu Metz and collaborators (Metz et al. 2008, Metz and 
Geritz 2016, Lion and Metz 2018). In class I, the environ-
ment feedback, determined by the resident of trait x, is given 
by its property P*(x); a single real number for each trait value x. 
Thus, the feedback is uni-dimensional. In class II, the environ-
ment is determined by the property P*(x) and also by the trait 
x directly, so that the environmental feedback loop is above 
dimension one. This is the case in our third scenario, where 
the interaction is determined by both the resident x and the 
mutant xm traits. Note that class I corresponds to the original 
formulation of invasion fitness functions leading to optimiza-
tion as defined by Metz and collaborators (Metz et al. 2008). 
Class II aims at making explicit that the resident phenotype 
acts on the invasion fitness not only through its abundance, 
but that its trait value x has also a direct impact, e.g. by chang-
ing the interaction strength and by creating niche differences.

For class I, the fitness gradient and the property P*(x) 
derivative are directly linked (see Supporting information for 
details),

¶ ( )
¶

= -
¶ ( )

¶
´

( )
= = ( )

w x x

x

f x P

P

dP x

dx
m

m
x x

I

P P xm

,
|

,
| *

*

  (21)

while for class II we get:

¶ ( )
¶

= -
¶ ( )

¶
´

( )

-
¶

= = ( )
w x x

x

f x x P

P

dP x

dx

f x x

m

m
x x

II

P P x

II
m

m

,
|

, ,
|

, ,

*

*
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x P P x x xm

( )
¶ = ( ) =

| * ,

 (22)
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Page 11 of 14

For class I, Eq. 21 generalizes Eq. 4 and 7, while for class II 
Eq. 22 generalizes Eq. 9 and 10. Equation 21 demonstrates 
that for class I, evolutionary singular strategies (roots of the 
left term) correspond to local maxima or minima of the prop-
erty P*. Furthermore, we can prove that singular strategies are 
either CSS or repellor (Supporting information). Whether 
the property P* is at a local maximum or minimum at the 
singular strategy depends on the sign of the derivative of fI. If 
this sign is negative, the property P* is maximized, while if it 
is negative, it is minimized. But as a minimum corresponds 
to a maximum of −P*, evolution optimizes or pessimizes (up 
to a choice of sign) if the invasion is of class I for the property 
P*. For class II, Eq. 22 contains an extra term, the partial 
derivative of fII relative to x. This term matches the partial 
derivative of α on the right side of Eq. 9 and 10. Unless eco-
logical dynamics constrain the partial derivative of fII relative 
to x in Eq. 22 to be zero, singular strategies do not corre-
spond to local maxima or minima of P*. Furthermore, we can 
prove that the cross derivative of the invasion fitness function 
no longer vanishes in general (Supporting information), so 
that any type of evolutionary singular strategy is possible.

Utmost it is important to note that class I and class II, for a 
given system, are not mutually exclusive. For a given property 
P1

*, the invasion fitness can be of class I, while for another 
property P2

*, it will be of class II. Scenario 2 is an example 
of such a system; for P1

* = N* it is of class I (see first row of 
Eq. 17), but for P2

* = r it is of class II (see second row of Eq. 
17). Another interesting example is to consider a competition 
function that is multiplicative separable, i.e. α(xm,x) = c(xm) × 
σ(x). The invasion fitness of this system is of class II for the 
property P* = N* and P* = r, but it is of class I for the property 
P*(x) = σ(x) × N*(x) = r(x)/c(x). That is, evolution optimizes 
this latest property and branching is not allowed (admittedly, 
such an emergent property is rarely relevant from an empiri-
cal or applied point of view). Consistently, we can prove that 
the niche overlap sensu coexistence theory is of one (ρ = 1), 
and the fitness ratio is equal Κ = P*(x)/P*(xm). Details for this 
example are given in the Supporting information.

To summarize, for a given system:

1) If there exists a property, such the invasion fitness is of class 
I. This property is optimized, and branching is impossible.

2) If there exists a property, such the invasion fitness is of 
class II. This property is in general not optimized, and 
branching not a priori impossible.

3) Class I and II are not mutually exclusive. That is, it could 
exist a population property P1

* such the invasion fitness 
is of class I and another property P2

* such that the inva-
sion fitness is of class II. P1

* is then optimized while P2
* is 

in general not optimised, and branching is not allowed 
(because P1

* is optimized).

Class I and II of invasion fitness functions can be general-
ized to polymorphic coevolution or, more generally, to species 
coevolution as follows. The evolution of each phenotype i (or 
species) is defined by its invasion fitness ωi(xi,m,x), i.e. the per 
capita growth rate (or sign equivalent) of a rare mutant xi,m in 

a resident community of n phenotypes (or species) x = (x1, x2, 
…, xn) at ecological equilibrium. We extend class I and class 
II to polymorphism by

class I poly

for all phenotypes

- ( )
= ( )( )

wi i m

i
I

i m

x x

f x x i

,

,
*

,

,P
  (23)

class II poly

for all phenotypes

- ( )
= ( )( )

wi i m

i
II

i m

x x

f x x x i

,

,
*

,

, ,P
  (24)

where P P x P x P xn
* * * *, , ,= ( ) ( ) ( )( )1 2 �  is the vector con-

taining the property for each of the n phenotypes. The same 
conclusions as in the monomorphic case apply. In class I 
evolution converges to a local maximum or minimum in the 
population properties, while this is not the case in class II. 
Moreover, in class I, singular strategies can only be a CSS or a 
repellor. Cases of polymorphisms have already been discussed 
in previous works (Metz et al. 2008, Metz and Geritz 2016), 
where coalitions of n phenotypes are considered, associated 
with feedback loops of various dimensions (from 1 to many). 
It is not quite clear how unidimensional feedback loops could 
lead to such polymorphic situations, as to maintain n phe-
notypes a feedback loop of dimension at least n is required 
(Meszena and Metz 1999). In our results, evolution does not 
necessarily maximize (or minimize) the property that is con-
sidered, but our environmental feedback loop is multidimen-
sional. In class I-poly, the environmental feedback loop is the 
vector of property P*, whose dimension equals the number of 
phenotypes. Details are given in the Supporting information.

Discussion

Understanding whether evolution leads to optimality in 
intrinsic growth rate, abundance or resilience is not only a 
theoretical question, but has practical implications for conser-
vation, for the sustainable management of exploited species, 
and for invasion biology among others. After a theoretical 
discussion, we will discuss these empirical implications.

Whether evolution optimizes r (or R0 often used in epide-
miology but first introduced in demography) and/or abun-
dances is a long-standing question. The belief that evolution 
maximizes population properties is still widespread. Indeed, 
quite often intrinsic growth rate (or one of its components) 
or variations in abundance are considered as good proxies to 
assess the fitness landscape. This, however, ignores the fact 
that this landscape is dynamic, due to frequency or density 
dependent selection (Dieckmann and Ferrière 2004). Here, 
density dependent selection is accounted for as invasion-
fitness depends on the resident abundance (or density), as 
is frequency dependent selection (the fitness of an invading 
mutant being positive, while it becomes null when it has 
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Page 12 of 14

replaced the resident). It is however not sufficient to intro-
duce frequency and density dependent selection to stay away 
from r and/or abundance optimization. As shown above, but 
also in Metz et al. (2008), Metz and Geritz (2016) or Lion 
and Metz (2018), optimization of r (or R0) and/or N∗ can still 
be achieved for specific form of invasion fitness.

The evolutionary outcome of the three studies scenarios 
can be understood based on coexistence theory (Chesson 
1990, Saavedra et al. 2017). Importantly, optimization is 
incompatible with niche differentiation (i.e. niche overlap 
ρ < 1 sensu coexistence theory) between the resident and 
the mutant phenotypes and therefore incompatible with 
branching events. In the specific cases (first and second sce-
narios) where a complete niche overlap exists, the fitness 
ratio κ then determines whether the mutant can invade, and 
evolution systematically selects the phenotype with the larg-
est abundance (K-selection) and largest intrinsic growth rate 
in scenario 1, and the largest abundance in scenario 2. The 
third scenario often leads to niche differentiation (i.e. ρ < 1), 
so that branching events are possible, while optimization is 
generally lost for all emergent properties we considered. The 
tight relationship we observe here between the occurrence 
of polymorphism and optimality is consistent with previ-
ous results concerning the role of evolution in epidemiology 
(Lion and Metz 2018).

To derive our results, we proposed a new gradient-based 
approach of the optimization principle. This approach directly 
links fitness gradients, hence the direction of evolution, to 
abundance and growth rate derivatives. Our results are com-
pletely in line with those obtained by another approach by 
Metz and collaborators (Metz et al. 2008, Metz and Geritz 
2016, Lion and Metz 2018). We show that our gradient-
based approach can be extended to polymorphic coevolution, 
paving the road to a polymorphic optimization principle.

Our distinction of three scenarios of fitness functions 
naturally raises the question of which biological traits could 
reasonably fit these different categories. Scenario one requires 
that the trait only affects the intrinsic growth rate (intrinsic 
fecundity and mortality) with no direct effect on interaction 
rates. Phenotypic traits that only affect intrinsic reproduction 
or survival without clear impact on the ecological niche are 
logical candidates. Similarly, traits that only incur a tradeoff 
between basic fecundity and survival (e.g. along the slow–fast 
continuum, Rose et al. (2009)) could also fall in this category. 
Evolution of such traits could lead to optimization. Scenario 
two requires that the trait affects simultaneously the intrin-
sic growth rate and competitive ability. Some plant defences 
have been suggested to evolve along this tradeoff (Blossey 
and Notzold 1995, Agrawal et al. 2012). This class could 
also include traits that evolve along the r − K continuum 
(MacArthur and Wilson 1967, Pianka 1970). Their evolu-
tion could theoretically lead to the optimization of biomass 
or density, but not of the other properties we studied. We 
caution however that for biological traits to fall into the two 
first scenarios, one has to thoroughly check that additional 
environmental components are not directly affected by the 
trait, which may often be difficult to assess. Also, many of the 

traits that are considered central from an ecological point of 
view, such as body size or phenology, are presumably inter-
esting because they constrain simultaneously life history and 
many different interactions. Body size for instance constrains 
many different life history traits (Peters and Peters 1986), but 
also competitive hierarchies (Persson et al. 2003) and trophic 
interactions (Woodward and Hildrew 2002). For such mul-
tidimensional traits, especially relevant for the understanding 
of the structure and functioning of ecological communities, 
optimization through evolution does not seem to be a reason-
able expectation.

Our results suggest that evolution will seldom optimize 
population growth rates, as this only happens for our first sce-
nario. Because growth rates are here directly linked to resil-
ience, we also found evolution to often be detrimental from 
a stability point of view. This has important consequences 
for various management or conservation aspects. In conser-
vation, restoring intrinsic growth rates is a very important 
objective to prevent or reverse the decline of the rare popula-
tions. Evolution is now more often considered in conserva-
tion plans (Stockwell et al. 2003). While our results suggest 
that natural selection will not necessarily help to maximize 
the growth rate, we still agree that evolution in general and 
genetic variability in particular should be carefully considered 
in conservation plans. Indeed, such restorations of variability 
would alleviate negative effects of genetic drift or inbreeding, 
aspects that are not explicitly accounted for in our analysis, 
but likely very important in rare populations. Population 
growth rate will then be increased, as detrimental mutations 
will be less easily fixed.

Management of intrinsic growth rates is equally impor-
tant for invasive species. As these species typically start from 
a restricted set of individuals, their vast increase in popula-
tion size or area occupied is in essence a problem of popula-
tion growth rate. We believe that our results may have several 
implications in this regard. Fast evolution in various traits 
has been observed in invasive species (Mooney and Cleland 
2001). Whether such an evolution will further increase the 
growth rate of the species, thereby making possible side effects 
of the invasion to be larger, is an important matter. Our results 
suggest that we should not necessarily expect such an out-
come. Particularly, fast counterselection of defence traits have 
repeatedly evolved in invasive species (Müller-Schärer et al. 
2004), as these species are often freed from some of their 
natural enemies (‘enemy release hypothesis’). Depending on 
the tradeoff structure associated with these defence traits, 
biological situations may be close to optimization or not. 
When defences only have direct impacts on growth or com-
petitive ability, assuming fixed herbivore densities, optimi-
zation of some properties may happen. Because such traits 
however often directly affect many ecological interactions, 
they may often follow our third scenario. In such cases, their 
evolution should not optimize the invasive species’ intrinsic 
growth rate. A similar line of reasoning could be applied to 
epidemics. Avoiding epidemics largely relies on the control of 
the infection growth rate (that is, keeping the R0 below one). 
As disease agents often have fast generation times and large 
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Page 13 of 14

populations, evolution readily occurs and affects this R0. Our 
approach suggests that, except for the most simplified eco-
logical scenarios, such evolution will not optimize the R0 (see 
Lion and Metz 2018 for a complete analysis of this topic).

Next to the management of species intrinsic growth rates, 
understanding the effects of evolution on population density 
or biomass is equally important. Most food resources con-
sumed by human populations stem from the use of exploited 
species, wild (e.g. fisheries) or domesticated (e.g. agricul-
ture). The amount of resources is often correlated to the 
density or biomass available. From an agricultural point of 
view, humans may guide the evolution of the species directly 
through artificial selection. Our results highlight that the 
relationship between the trait that is modified and the eco-
logical interactions of the cultivated species with other species 
of the ecosystem will largely determine whether optimization 
can be expected or not. Because the interaction context is 
often simplified in selection assays, this highlights that many 
traits that are selected due to optimality in this reduced 
context may eventually lead to non-optimal phenotypes in 
the field (Loeuille et al. 2013). Now consider wild species. 
While direct artificial selection is then not possible, harvest-
ing these species incurs large extra-mortality. Such large selec-
tive pressures often yield fast evolution. For instance, in many 
fished species, evolution to earlier maturity at smaller adult 
size has been observed (Grift et al. 2003, Olsen et al. 2004). 
Because body size is involved in many ecological interac-
tions, reviewed by Edeline and Loeuille (2020), we expect its 
evolution to belong to class II models. Therefore, it is quite 
possible for this evolution to be detrimental to the standing 
density or biomass.

Our results also highlight that evolution may readily pro-
duce tradeoffs among different emergent properties. Indeed, 
optimization of all three emergent population properties only 
occurs in the simplest scenario. In all other instances, any 
optimality in one of the emergent properties will come at a 
cost in one of the other. This has important applied conse-
quences. Ecological management is not simply about improv-
ing one population aspect, but several ones. Conservation of 
rare species often aims at improving their growth rates, but 
also to maintain large enough densities. In the case of fisher-
ies, it is important not only to maintain high abundances 
(to get a certain yield but also to avoid unwanted ecological 
consequences such as population crashes), but also to main-
tain the resilience of the system (Conover and Munch 2002). 
Given evolution of maturity and body size in harvested 
species, we expect their evolution to follow class II models. 
Evolutionary dynamics are unlikely to foster a double objec-
tive of high abundances and large resilience. In line with this 
idea, the evolution of earlier maturity in Newfoundland cod 
stocks may be one of the reasons for the lack of recovery of 
the population, and has been directly linked to changes in 
resilience (Olsen et al. 2004).

To conclude, we propose that, while we have worked 
here on very simple models in very simplified situations, the 
topic at hand may have far-reaching implications not only 
from a conceptual and theoretical point of view, but also 

affect how we view the conservation and management of 
natural systems. This is especially true given the fast accu-
mulating evidence that evolution occurs on quite short tim-
escales (Hairston et al. 2005), given current global changes 
(Urban et al. 2016). Exact implications for more complex 
systems (e.g. in the case of diffuse coevolution in complex 
ecological networks) or for specific cases require further 
investigation, and will certainly bring a new set of exciting 
questions.
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S1: Mathematical details for the three scenarios

In this appendix, we provide all mathematical details behind the three scenarios we

studied in section (2) of the main text.

Mathematical detail for the first scenario

The invasion fitness of the first scenario reads as

!(xm, x) = r(xm)� ↵ ·N⇤(x). (S1.1)

As a consequence, the fitness gradient is given by

@!(xm, x)

@xm

����
xm=x

=
dr(xm)

dxm

����
xm=x

=
dr(x)

dx
. (S1.2)

The abundance at ecological equilibrium equals N⇤(x) = r(x)/↵, consequently its deriva-

tive relative to x equals
dN⇤(x)

dx
=

1

↵
· dr(x)

dx
. (S1.3)

Together with equation (S1.2), it proves equation (4) of the main text.

Evolutionary singular strategies can be either convergent (in which case local trajec-

tories will converge to the strategy) or divergent (in which case natural selection favours

1



strategies away from the singular strategy). They can also be invasible by nearby mu-

tants, or non-invasible (ESS). Convergence and invasibility of singular strategies can be

investigated using second derivatives of the relative fitness, assessed at the singularity

(Dieckmann and Law, 1996). The singularity is convergent if and only if

@2!(xm, x)

@x@xm

����
xm=x

+
@2!(xm, x)

@x2
m

����
xm=x

< 0. (S1.4)

The singularity is non invasible if and only if

@2!(xm, x)

@x2
m

����
xm=x

< 0. (S1.5)

The second partial derivative of the invasion fitness is given by

@2!(xm, x)

@x2
m

����
xm=x

=
d2r(xm)

dx2
m

����
xm=x

=
dr2(x)

dx2
= ↵ · d

2N⇤(x)

dx2
, (S1.6)

and the crossed derivative by

@2!(xm, x)

@xm@x

����
xm=x

= 0. (S1.7)

The crossed derivative being always equal to zero implies that singular strategies can only

be either 1) convergent and non-invasible, i.e., a CSS, or 2) non-convergent and invasible,

i.e., repellor. Moreover, with the second partial derivative, we conclude that the singular

strategy is non-invasible (and therefore a CSS) if and only if the intrinsic growth rate (or

species abundance) is at a local maximum (negative second derivative). Similarly, the

singular strategy is invasible (and therefore a repellor) if and only if the intrinsic growth

rate (or species abundance) is at a local minimum (positive second derivative).

Model of fig. 1 panels A to C

The intrinsic growth rate r(x) is given by a bell-shape function of the form

r(x) = rm · e�(x�ro)2/(2·�2
r). (S1.8)

Parameters are rm the maximum intrinsic growth rate, ro the optimum value in the trait

x, and �r the width of the bell-shape curve. Note that r(x) > 0 for all trait value x. The
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fitness gradient equals

@!(xm, x)

@xm

����
xm=x

=
dr(x)

dx
=

x� ro
�2
r

· rm · e�(x�ro)2/(2·�2
r). (S1.9)

Its unique root is x⇤ = ro. Evolutionary singular strategies match the optimum in

intrinsic growth rate x⇤ = ro. Second and cross derivatives of the relative fitness function,

evaluated at the singular strategy x⇤ are given by

@2!(xm, x)

@x2
m

����
xm=x=x⇤

= � ro
�2
r

· rm < 0, (S1.10)

and
@2!(xm, x)

@xm@x

����
xm=x=x⇤

= 0. (S1.11)

This proves that the singular strategy x⇤ = ro is convergent and non-invasible, i.e., a

CSS.

Model of fig. 1 panels D to F

The intrinsic growth rate r(x) is given by a saturating function of the Michaelis–Menten

form,

r(x) = rm · x

hr + x
with x > 0. (S1.12)

Parameters are rm the maximum intrinsic growth rate and hr the half saturation constant.

Note that r(x) > 0 for all trait values x > 0. The fitness gradient equals

@!(xm, x)

@xm

����
xm=x

=
dr(xm)

dxm

����
xm=x

=
dr(x)

dx
= rm · x

(hr + x)2
> 0, (S1.13)

which is always positive. Selection therefore always favours larger x phenotypes, so that

evolution also maximizes intrinsic growth rates and abundances.

Mathematical detail for the second scenario

The invasion fitness of the second scenario reads as

!(xm, x) = r(xm)� ↵(xm) ·N⇤(x). (S1.14)
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As a consequence, the fitness gradient is given by

@!(xm, x)

@xm

����
xm=x

=
dr(xm)

dxm

����
xm=x

� d↵(xm)

dxm

����
xm=x

·N⇤(x)

=
dr(x)

dx
� d↵(x)

dx
·N⇤(x).

(S1.15)

This prove equation (6) of the main text. The abundance at ecological equilibrium equals

N⇤(x) = r(x)/↵(x), consequently its derivative relative to x equals

dN⇤(x)

dx
=

1

↵(x)
· dr(x)

dx
� r(x)

(↵(x))2
· d↵(x)

dx

=
1

↵(x)
·
✓
dr(x)

dx
� d↵(x)

dx
·N⇤(x)

◆

=
1

↵(x)
· @!(xm, x)

@xm

����
xm=x

(S1.16)

Within the bracket we can recognize the fitness gradient (equ. S1.2), which proves equa-

tion (7) of the main text. The second partial derivative of the invasion fitness is given

by
@2!(xm, x)

@x2
m

����
xm=x

=
d2r(xm)

dx2
m

����
xm=x

� d2↵(xm)

dx2
m

����
xm=x

·N⇤(x)

=
dr2(x)

dx2
� d2↵(x)

dx2
·N⇤(x).

(S1.17)

To relate it to the second derivative of N⇤(x), it is easier to start from equation (S1.16)

and to take the derivative of the second row

d2N⇤(x)

dx2
=� 1

(↵(x))2
· d↵(x)

dx
·
✓
dr(x)

dx
� d↵(x)

dx
·N⇤(x)

◆

+
1

↵(x)
·
✓
d2r(x)

dx2
� d2↵(x)

d2x
·N⇤(x)

◆

� 1

↵(x)

d↵(x)

dx
· dN

⇤(x)

dx

(S1.18)
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On the first row, we recognize the fitness gradient, and on the second row the second

derivative of the invasion fitness. Consequently, this equation also reads as

d2N⇤(x)

dx2
=� 1

(↵(x))2
· d↵(x)

dx
· @!(xm, x)

@xm

����
xm=x

+
1

↵(x)
· @

2!(xm, x)

@x2
m

����
xm=x

� 1

↵(x)

d↵(x)

dx
· dN

⇤(x)

dx

(S1.19)

When evaluated at a singular strategy x̂ it simplifies to

d2N⇤(x)

dx2

����
x=x̂

=
1

↵(x)
· @

2!(xm, x)

@x2
m

����
xm=x=x̂

. (S1.20)

This proves that an invasible strategy correspond to a local minimum in abundance,

while a non-invasible strategy to a local maximum in abundance. The crossed derivative

is simpler to compute and is given by

@2!(xm, x)

@xm@x

����
xm=x

=
d↵(x)

dx
· dN

⇤(x)

dx
. (S1.21)

As a singular strategy is also an optimum in N ⇤ (x), the crossed derivative vanishes at

a singular strategy. Therefore, singular strategies can only be either 1) convergent and

non-invasible, i.e., CSS, or 2) non-convergent and invasible, i.e., repellor. Moreover, with

the second partial derivative, we conclude that the singular strategy is non-invasible (and

therefore a CSS) if and only if the intrinsic growth rate (or species abundance) is at a

local maximum (negative second derivative). Similarly, the singular strategy is invasible

(and therefore a repellor) if and only if and only if the intrinsic growth rate (or species

abundance) is at a local minimum (positive second derivative).

Model of fig. 2 panels A to C

The intrinsic growth rate r(x) and the intra-specific competition are functions are given

by

r(x) = rm · x

hr + x
↵x = ↵ox

� with x > 0 (S1.22)

Parameters are rm the maximum intrinsic growth rate and hr the half-saturation, and

0 < � < 1 determines the shape of the trade-o↵ function and ↵o its amplitude. Note that

r(x) > 0 for all trait value x > 0. The relative fitness function of a rare mutant xm in a
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resident population x is given by

!(xm, x) = r(xm)� ↵(xm) ·N⇤(x) = rm ·
✓

xm

hr + xm
� x�

m · x1��

hr + x

◆
. (S1.23)

Then, the fitness gradient equals

@!(xm, x)

@xm

����
xm=x

=
dr(x)

dx
� d↵(x)

dx
·N⇤(x)

=rm ·
✓

hr

(hr + x)2
� �

hr + x

◆
.

(S1.24)

It equals zero at x⇤ = h · (1� �)/�.

Model of fig. 2 panels D to F

The intrinsic growth rate r(x) and the intra-specific competition are given by

r(x) = rm · e��rx ↵x = ↵m · e��↵x with x > 0 (S1.25)

Parameters are rm the maximum intrinsic growth rate, ↵m the maximum level of intra-

specific competition, �r > 0 the rate at which the intrinsic growth rate decreases with

the trait value x, and �↵ > 0 the rate at which the intrinsic growth rate decreases with

the trait value x. Note that r(x) > 0 for all trait value x > 0. Thus, the ecological

equilibrium is given by

N⇤(x) =
r(x)

↵(x)
=

rm
↵m

· e�(�r��↵)·x (S1.26)

The relative fitness function of a rare mutant xm in a resident population x is given by

!(xm, x) = r(xm)� ↵(xm) ·N⇤(x) = rm ·
�
e��rxm � ·e��↵xm · e�(�r��↵)·x

�
. (S1.27)

The fitness gradient equals

@!(xm, x)

@xm

����
xm=x

=
dr(x)

dx
� d↵(x)

dx
·N⇤(x)

=rm · e��rx · (�↵ � �r) .

(S1.28)

Note that the signe of the evolutive gradient is given by the sign of �↵ � �r. Thus,

phenotypic traits converge either to x⇤ = 0 if �↵��r < 0 or to x⇤ ! 1 if �↵��r > 0. In

both cases, evolution selectes phentoypes with larger abundance, as function of equation
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(S1.26) decreases if �↵ � �r < 0 and increases if �↵ � �r > 0.

Mathematical detail for the third scenario

The invasion fitness of the third scenario reads as

!(xm, x) = r(xm)� ↵(xm, x) ·N⇤(x). (S1.29)

As a consequence, the fitness gradient is given by

@!(xm, x)

@xm

����
xm=x

=
dr(xm)

dxm

����
xm=x

� @↵(xm, x)

@xm

����
xm=x

·N⇤(x)

=
dr(x)

dx
� @↵(xm, x)

@xm

����
xm=x

·N⇤(x).

(S1.30)

This prove equation (9) of the main text. The abundance at ecological equilibrium equals

N⇤(x) = r(x)/↵(x, x), consequently its derivative relative to x equals

dN⇤(x)

dx
=

1

↵(x, x)
· dr(x)

dx
� r(x)

(↵(x, x))2
· @↵(x

0, x)

@x0

����
x0=x

� r(x)

(↵(x, x))2
· @↵(x, x

0)

@x0

����
x0=x

=
1

↵(x, x)
·
✓
dr(x)

dx
� @↵(x0, x)

@x0

����
x0=x

·N⇤(x)� @↵(x, x0)

@x0

����
x0=x

·N⇤(x)

◆

=
1

↵(x, x)
·
✓
@!(xm, x)

@xm

����
xm=x

� @↵(x, x0)

@x0

����
x0=x

·N⇤(x)

◆
.

(S1.31)

In the first two terms in the second row bracket, we can recognize the evolutive gradient.

Thus, this expression can be rewritten as

dN⇤(x)

dx
=

1

↵(x, x)
·
✓
@!(xm, x)

@xm

����
xm=x

� @↵(xm, x)

@x

����
xm=x

·N⇤(x)

◆
. (S1.32)

This proves equation (10) of the main text. As already explained in the main text,

equations (S1.30 and S1.31) imply that a singular strategy do not correspond to local

optimum in abundance or in intrinsic growth rate (unless we are in a particular case; as

explained in the main text). The crossed derivative is given by

@2!(xm, x)

@xm@x

����
xm=x

=
d↵(xm, x)

dxm

����
xm=x

· dN
⇤(x)

dx
. (S1.33)

As a singular strategy is not an optimum in N⇤(x), the crossed derivative does not vanish

at a singular strategy. Therefore, any types of singular strategy are possible.
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S2: Details for the two co-evolving morphs

The ecological dynamics of two morphs of traits x1 and x2 is given by the classical Lotka-

Volterra model of competition. The intrinsic growth rate r(xi) and interaction strength

↵(xi, xj) are functions of the phenotypes traits x1 and x2 and the Lotka-Volterra model

is given by: 8
><

>:

dN1

dt
= N1 · (r(x1)� ↵(x1, x1) ·N1 � ↵(x1, x2) ·N2)

dN2

dt
= N2 · (r(x2)� ↵(x2, x1) ·N2 � ↵(x2, x2) ·N2)

(S2.1)

The niche-overlap ⇢ and fitness-di↵erence  metrics sensu coexistence theory are given

by

⇢ =

s
↵(x1, x2)↵(x2, x1)

↵(x1, x1)↵(x2, x2)
and  =

r(x1)

r(x2)
·

s
↵(x2, x2)↵(x2, x1)

↵(x1, x1)↵(x1, x2)
, (S2.2)

and coexistence between the two morphs is reached if and only if

1

⇢
>  > ⇢. (S2.3)
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S3: Mathematical proof of the gradient-based approach –

monomorphic case

In this appendix, we give the full mathematical proof of our results. We will start by

showing that class I models lead to evolution that optimizes (local maximum or minimum)

the property P ⇤ and to evolutionary singular strategies that can only be CSS or reppelor.

Then we will explain why for class II models, such optimization principles do not generally

hold, and why any type of singular strategies can be expected.

Class I of relative fitness function; optimization

The proof works as follows. First, let us assume that the system is at its ecological

equilibrium. By definition of such an ecological equilibrium, the following equality must

be fulfilled:

f(x, P ⇤(x)) = 0. (S3.1)

This is so, because f I(x, P ⇤(x)) is the per capita growth of a resident phenotype in a

resident population at is ecological equilibrium. By taking the derivative relative to x on

both side we obtain,

@f I(x1, P ⇤(x))

@x1

����
x1=x

+
@f I(x, P )

@P

����
P=P ⇤(x)

· dP
⇤(x)

dx
= 0. (S3.2)

The fitness gradient is by definition

@!(xm, x)

@xm

����
xm=x

=
@f I(xm, P ⇤(x))

@xm

����
xm=x

. (S3.3)

Combining these two equations results in

@!(xm, x)

@xm

����
xm=x

= � @f I(x, P )

@P

����
P=P ⇤(x)

· dP
⇤(x)

dx
, (S3.4)

which is equation (21) of the main text.

The cross derivative is given by

@2!(xm, x)

@x@xm

����
xm=x

=
@2f I(xm, P )

@P@xm

����
xm=x,P=P ⇤(x)

· dP
⇤(x)

dx
. (S3.5)

As an evolutionary singular strategy x⇤ corresponds to a local maximum or minimum in

9



P ⇤, the cross derivative vanishes at x⇤. This proves that x⇤ can only be a CSS (convergent

and non invasible) or a repellor (non-convergent and invasible), depending on the sign

of the second derivative of the relative fitness function. A positive second derivative

corresponds to a CSS, while a negative value results in a repellor.

Finally, we relate the second derivative of the relative fitness function to the second

derivative of the property P ⇤. To do so, we take the second derivative, relative to the

evolving traits x, of the equilibrium condition, f I(x, P (x)) = 0. It leads to

@2f I(x, P )

@x2

����
P=P ⇤(x)

+ 2 · @f(x, P )

@P@x

����
P=P ⇤(x)

· dP
⇤(x)

dx

+
@2f I(x, P )

@P 2

����
P=P ⇤(x)

·
✓
dP ⇤(x)

dx

◆2

+
@f I(x, P )

@P

����
P=P ⇤(x)

· d
2P ⇤(x)

dx2
= 0.

(S3.6)

At an evolutionary singular point x⇤ the first derivative of P ⇤(x) vanishes. Moreover,

the first term equals the second derivative of the relative fitness function. Therefore, we

obtain the following equivalence,

@2!(xm, x)

@x2
m

����
xm=x=x⇤

= � @f I(x⇤, P )

@P

����
P=P ⇤(x⇤)

· d
2P ⇤(x⇤)

(dx⇤)2
. (S3.7)

Depending on the sign of @f(x, P )/@N |P=P ⇤(x), the second derivative of the relative fitness

function has the same, or opposite, sign as the second derivative of P ⇤.

Class II fitness functions; non-optimisation

We now show that for class II models, such an optimization principle does not hold.

Again, at the ecological equilibrium we have,

f II(x, x, P ⇤(x)) = 0. (S3.8)

By taking its derivative relative to x, we obtain

@f II(x1, x, P ⇤(x))

@x1

����
x1=x

+
@f II(x, x2, P ⇤(x))

@x2

����
x2=x

+
@f II(x, x, P )

@P

����
P=P ⇤(x)

· dP
⇤(x)

dx
= 0.

(S3.9)
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In the first term we can recognize the fitness gradient. Consequently we obtain

@!(xm, x)

@xm

����
xm=x

= � @f II(x, x, P )

@P

����
P=P ⇤(x)

· dP
⇤(x)

dx

� @f II(x, x2, P ⇤(x))

@x2

����
x2=x

,

(S3.10)

which is equation (22) of the main text. The term @f II(x, x2, P ⇤(x))/@x2|x2=x does not

necessarily equal zero, so that an evolutionary singularity is no longer equivalent to a

local optimum in P ⇤.

Moreover, the cross derivative of the relative fitness function, in class II, equals to

@2!(xm, x)

@x@xm

����
xm=x

=
@2f(xm, x, P )

@P@xm

����
xm=x,P=P ⇤(x)

· dP
⇤(x)

dx

+
@2f(xm, x, P )

@x@xm

����
xm=x,P=P ⇤(x)

,

(S3.11)

which, in general, does not vanish. This shows that, in general, evolution in class II

models does not optimize P ⇤, and that any type of evolutionary singular strategy is

possible.
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S4: Example with multiplicative separable competition function

In this appendix, we detailed the example with a multiplicative separable competition

function. That is, we assume that the competition strength of a resident phenotype x on

a mutant xm as the form

↵(xm, x) = c(xm)�(x). (S4.1)

The abundance at ecological equilibrium is given by

N⇤(x) =
r(x)

c(x)�(x)
, (S4.2)

and the invasion fitness by

!(xm, x) = r(xm)� c(xm)�(x)N
⇤(x). (S4.3)

By replacing the equilibrium abundance into this expression, we obtain

!(xm, x) = r(xm)� c(xm)�(x)
r(x)

c(x)�(x)
= r(xm)� c(xm)

r(x)

c(x)
. (S4.4)

This expression can be rewritten into the four equivalent forms:

!(xm, x) =c(xm)

✓
r(xm)

c(xm)
� r(x)

c(x)

◆

=c(xm) (�(xm)N
⇤(xm)� �(x)N⇤(x))

=r(xm)�
c(xm)

c(x)
r(x)

=c(xm)�(xm)

✓
N⇤(xm)�

�(x)

�(xm)
N⇤(x)

◆

(S4.5)

The first two rows Imply that the invasion fitness is of class I for the property P ⇤(x) =
r(x)
c(x) = �(xm)N⇤(xm). That is, evolution optimizes this quantity, and branching is not

allowed. The last two rows imply that evolution does not optimize r neither N⇤. But as

evolution optimizes r(x)
c(x) = �(xm)N⇤(xm) branching is not allowed and evolution converges

to a CSS.

We reach the exact same conclusion by applying coexistence theory. The niche overlap

is given by

⇢ =

s
c(xm)�(x)c(x)�(xm)

c(x)�(x)c(xm)�(xm)
= 1, (S4.6)
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which indicates that branching is impossible and that the selected phenotypes is deter-

mined by the fitness ratio,

 =
r(x)

r(xm)

s
c(xm)�(xm)c(xm)�(x)

c(x)�(x)c(x)�(x)
=

r(x)/c(x)

r(xm)/c(xm)
=

�(x)N⇤(x)

�(xm)N⇤(xm)
. (S4.7)

Thus we reach the same conclusion that evolution selects phenotype with larger r(x)
c(x) =

�(x)N⇤(x).

In conclusion, this invasion fitness is of class I when one consider the property r(x)
c(x) =

�(x)N⇤(x), but of class II when one consider the property r or N⇤.
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S5: Mathematical proof of the gradient-based approach –

polymorphic case

In this appendix, we extend the proofs in Supporting Material S3 to the polymorphic

case.

Class I of relative fitness function; optimization

Let us assume that the system is at ecological equilibrium at which the following set of

equations hold: 8
>>><

>>>:

f I
1 (x1,P

⇤(x)) = 0

...

f I
n(xn,P

⇤(x)) = 0

(S5.1)

The relative fitness function of, and its derivative for a mutant xi,m of phenotype i are

given by

!i(xi,m,x) = f I
i (xi,m,P

⇤(x)) and
@!i(xi,m,x)

@xi,m

����
xi,m=xi

=
@f I

i (xi,P
⇤(x))

@xi
(S5.2)

As in the monomorphic case, we can relate the fitness gradient to the property P ⇤ deriva-

tive in the following way. We take the derivative of the set of equilibrium equations (S5.1)

relative to the traits xi of phenotypes i. This results in the following set of linear equation

for the property partial derivative @P ⇤/@xi:

8
>>>>>><

>>>>>>:

@f I
1 (x1,P

⇤(x))

@xi
= �@f I

1 (x1,P
⇤(x))

@P1
· @P1

@xi
· · ·� @f I

1 (x1,P
⇤(x))

@Pn
· @Pn

@xi

...

@f I
n(xn,P

⇤(x))

@xi
= �@f I

n(xn,P
⇤(x))

@P1
· @P1

@xi
· · ·� @f I

n(xn,P
⇤(x))

@Pn
· @Pn

@xi

(S5.3)

This set of linear equation can be rewritten in a matrix format as

2

664

@fI
1 (x1,P ⇤(x))

@xi
...

@fI
n(xn,P ⇤(x))

@xi

3

775 = �↵ · @P
⇤(x)

@xi
. (S5.4)

The elements of the matrix ↵ are the partial derivatives @f I
i (xi,P

⇤(x))/@Pj of the per

capita growth rate relative to the property P ⇤. For class I fitness functions, all terms of

14



the vector of the left term equals zero except for the element i:

2

664

@fI
1 (x1,P ⇤(x))

@xi
...

@fI
n(xn,P ⇤(x))

@xi

3

775 =

2

664

0
@!i(xi,m,x)

@xi,m

���
xi,m=xi

0

3

775 . (S5.5)

This results in the following equivalence between the fitness gradient and the property

P ⇤: 2

664

0
@!i(xi,m,x)

@xi,m

���
xi,m=xi

0

3

775 = �↵ · @N
⇤(x)

@xi
. (S5.6)

This equation is the generalization to polymorphic (or species) coevolution of the equation

(21) of the monomorphic case. This equation shows the equivalence between properties

optimum and singular strategies.

Following the same line as in the monomorphic demonstration, we compute the cross

derivative of the relative fitness for each phenotype i,

@2!i(xi,m,x)

@xj@xi,m

����
xi,m=xi

=
nX

k=1

@2f I
i (xi,m,P )

@Pk@xi,m

����
xi,m=xi,P=P ⇤(x)

· @P
⇤
k (x)

@xj
. (S5.7)

As the partial derivatives of the property P ⇤ vanishes at singular strategies, the cross

derivatives also equal zeros at singular strategies. This demonstrates that a singular

strategy can either be convergent and evolutionary stable (CSS), or non-convergent and

evolutionary non-stable (repellor).

Finally, the second derivative relation (equation S3.7 in the monomorphic case) gen-

eralizes to the polymorphic case as

2

664

0
@2!i(xi,m,x)

@x2
i,m

���
xi,m=xi

0

3

775 = �↵ · @
2P ⇤(x)

@x2
i

. (S5.8)

This equation generalizes (equ. S3.7) of the monomorphic case.
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Class II fitness functions; non-optimisation

The main di↵erence with the class I of relative function is that in the vector

2

664

@fII
1 (x1,x,P ⇤(x))

@xi
...

@fII
n (xn,x,P ⇤(x))

@xi

3

775 (S5.9)

none of the terms
@f II

j (xj,x,P
⇤(x))

@xi
for i 6= j (S5.10)

vanish in general. This is so, because of the presence of the term x in the relative fitness

function. That is, in general,

2

664

@fII
1 (x1,x,P ⇤(x))

@xi
...

@fII
n (xn,x,P ⇤(x))

@xi

3

775 6=

2

664

0
@!i(xi,m,x)

@xi,m

���
xi,m=xi

0

3

775 , (S5.11)

consequently, coevolution does not lead to abundance optimization and any type of sin-

gular strategies is possible.
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