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Abstract
With current environmental changes, evolution can rescue declining populations, but what 
happens to their interacting species? Mutualistic interactions can help species sustain each 
other when their environment worsens. However, mutualism is often costly to maintain, 
and evolution might counter-select it when not profitable enough. We investigate how the 
evolution of the investment in a mutualistic interaction by a focal species affects the persis-
tence of the system. Specifically, using eco-evolutionary dynamics, we study the evolution 
of the focal species investment in the mutualistic interaction of a focal species (e.g. plant 
attractiveness via flower or nectar production for pollinators or carbon exudate for mycor-
rhizal fungi), and how it is affected by the decline of the partner population with which it is 
interacting. We assume an allocation trade-off so that investment in the mutualistic interac-
tion reduces the species intrinsic growth rate. First, we investigate how evolution changes 
species persistence, biomass production, and the intensity of the mutualistic interaction. 
We show that concave trade-offs allow evolutionary convergence to stable coexistence. We 
next assume an external disturbance that decreases the partner population by lowering its 
intrinsic growth rate. Such declines result in the evolution of lower investment of the focal 
species in the mutualistic interaction, which eventually leads to the extinction of the partner 
species. With asymmetric mutualism favouring the partner, the evolutionary disappearance 
of the mutualistic interaction is delayed. Our results suggest that evolution may account for 
the current collapse of some mutualistic systems like plant-pollinator ones, and that resto-
ration attempts should be enforced early enough to prevent potential negative effects driven 
by evolution.
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Introduction

Facing current global change, evolutionary mechanisms can help maintain biodiversity. 
Evolutionary rescue (Ferriere and Legendre 2013; Carlson et al. 2014) corresponds to the 
selection of new traits in population collapsing with environmental changes that allow for 
a demographic bounce. The signature for evolutionary rescue is the increase in frequency 
of the allele and corresponding phenotype robust to the new environment, correlatively to 
the population bounce. While this can be easily highlighted in lab experiments, it has so far 
been seldom observed in nature. In their review Carlson et al. (2014) cite, for example, a 
previous study showing the adaptation of some Chlorella species, but not all, after strong 
acidification of many Canadian lakes with industrial pollution.

However, species are not isolated from one another and interaction might interfere with 
this evolutionary process. Mutualism is an interaction that has already been intensively 
studied, and proven to be fragile to global changes (Toby Kiers et al. 2010). Echoing to 
that loss of interactions is that of biodiversity and ecosystem services such as pollination 
(Willmer 2011a) and seed dispersal (Jordano et al. 2010) and effective carbon and nutrient 
cycles (Wilson et al. 2009). While several reviews like that of Potts et al. (2010) point out 
the critical ecological crises we are undergoing, Toby Kiers et al. (2010) add that mutual-
ism, by binding species to a common fate, could create an evolutionary breakdown. With 
environmental changes, mutualism can become costly to maintain. Aside from co-extinc-
tion of the two interacting species, evolution can lead to mutualism loss, partner switch, or 
even a shift to antagonism. They thoroughly present how the different types of mutualisms 
are specifically sensitive or resistant to breakdown depending on the global change drivers. 
For example, plant-pollinator mutualism could be strongly affected by climate change and 
habitat fragmentation, while plant-rhizosphere mutualisms will be more affected by nutri-
ent enrichment and the introduction of exotic species.

Mutualistic systems, like all other systems of interacting species, will respond differ-
ently to global change (Tylianakis et al. 2008). Facing a similar environmental perturba-
tion, some species may show strong population decrease, while their partner species better 
cope with the environmental change. However, because the fitness of the two partners are 
positively linked (mutualistic interaction), the fitness decrease of any of the partner species 
indirectly harms its interactor, reducing its potential for evolutionary rescue and slowing 
its evolution (evolutionary inertia; Loeuille 2019). For mutualism, and especially obliga-
tory ones, this might lead to species extinction, driven by the evolutionary disinvestment of 
its interactor. This effect is called an evolutionary murder (name suggested by Parvinen in 
2005).

For instance, plants have been shown to evolve rapidly to changing pollinator popula-
tions (Darwin 1877; Parmesan 2006; Bodbyl Roels and Kelly 2011; Hopkins and Rausher 
2012). A recent study from Gervasi and Schiestl (2017) experimentally shown that changes 
in pollinator communities affect plant trait evolution after only eleven generations. Exposed 
to bumblebees, which are very efficient pollinators of Brassica rapa, the plants evolved 
toward more attractive traits to those pollinators (e.g. traits attracting pollinators such as 
volatile organic compounds, flower size, or plant height). Moreover, hoverflies, which are 
less efficient pollinators of B. rapa, caused a 15-fold increase in self-reproduction and a 
reduction in plant attractiveness. Given these experimental results, the current change and 
reshaping of pollinator communities may affect the evolution of plant species, which in 
turn could influence coexistence with their interacting pollinators, i.e., an eco-evolutionary 
feedback loop.
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Plant-mycorrhizal fungi interactions are another type of mutualism affected by global changes. 
The mycorrhizal fungi can for example fix inorganic nitrogen and provide this essential nutrient 
to the plant, who, in exchange, transfers via its roots carbon products to the fungi. Several experi-
ments already shown that enriching the soil in nitrogen (often from anthropogenic sources in natu-
ral environments) disturbs this mutualistic exchange, by inducing a shift in the allocation to the 
mycorrhizal structures (Johnson et al. 2003) and the composition of the mycorrhizal community 
(Egerton-Warburton et al. 2007). This can in turn affects the plant community, and can even facili-
tate the invasion of alien plant species (Nijjer et al. 2008).

Theoretical studies have investigated the ecological (Goh 1979; Thébault and Fontaine 2010; 
Rohr et  al. 2014; Saavedra et  al. 2016) and evolutionary dynamics (Ferriere et  al. 2002; De 
Mazancourt and Schwartz 2010; Toby Kiers et al. 2010; Georgelin and Loeuille 2016; Valdovinos 
et al. 2016) of mutualistic communities such as plant-pollinators or plant-fungi. In particular, the 
evolution of plant selfing with changing pollinator communities has been studied in several papers 
(Cheptou and Massol 2009; Lepers et al. 2014; Astegiano et al. 2015). Thomann et al. (2013) even 
suggested that the decrease in pollinator richness and density could intensify pollen limitation. 
They propose that plants could in turn adapt either by increasing autonomous selfing or reinforc-
ing the interaction with pollinators. Here we study the consequences of a declining population 
(e.g. pollinator collapse) on the eco-evolutionary dynamics of a two-species mutualistic system 
(e.g. plant-pollinator or plant-fungi). Specifically, using the adaptive dynamics framework, we 
study the eco-evolution of the investment in mutualism of a focal species. We assume that the 
evolving focal species does not rely exclusively on its mutualistic partner (facultative mutualism), 
while the partner species can either be in an obligatory or in a facultative mutualism. This frame-
work explicitly accounts for the eco-evolutionary feedback loop between the two species. We 
clarify when evolution leads to high or low investment in mutualism and determine the conditions 
under which evolution leads to the coexistence of the whole system. We then show that a declin-
ing partner population often results in a counter-selection of the investment in mutualism of the 
focal species, which eventually enhances the population declines. For simplicity in the narrative, 
in the following, we will use the example of a plant-pollinator system. The adaptive trait is the 
plant investment, and the declining population is the pollinator. However, our approach remains 
general and can be applied to other mutualistic systems.

Plant‑pollinator model and ecological dynamics

We consider a simple system with two interacting species; a plant with biomass density P , 
and a pollinator with biomass density A . Note that this model is formulated as a general 
model of mutualism rather than very specifically tied to plant-pollinator interactions so that 
results may also concern other mutualistic systems. The community dynamics are given by 
a Lotka-Volterra type model:

A schematic view of the system is given in Fig. 1. The parameters r
A
 and r

P
 correspond 

to the intrinsic growth rate of the pollinator and plant populations, respectively. We assume 
r
P
 to be strictly positive because of other reproduction means, e.g. vegetative reproduc-

tion or autogamy. The intrinsic growth rate of the pollinator ( r
A
 ) can be positive (in which 
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case the pollinator has access to alternative resources that allow a positive intrinsic growth 
rate) or negative (in which case the pollinator strictly needs the plant species, obligatory 
mutualism). Parameters c

A
 and c

P
 modulate intraspecific competition for the two species. 

Mutualistic interactions are given by ��
A
 and ��

P
 , with �

P
 the fitness gain provided by the 

plant (via nectar, pollen and/or other plant exudates) to the pollinator, and �
A
 the fertilisa-

tion provided by the pollinator to the plant. Because we consider mutualism as the net ben-
efit obtained by both species, both � parameter values are assumed positive in our model. 
We modulate the intensity of the interaction between the two species with the parameter 
� . While the interaction depends on biological traits from both interactors (e.g. pollina-
tor morphology or flight capacities, plant attractiveness), we have chosen to model it as a 
plant-dependent trait and have therefore linked it to other plant traits via a trade-off func-
tion (Fig. 2). We interpret it here as the attractiveness of the plant for the pollinator, and it 
corresponds to the trait that is under selection in the rest of the study. This plant attractive-
ness includes investment in various characters such as the number of flowers, their shape, 
their colour, volatile organic compound (VOCs) that attract insects with their odour, plant 
height, flowering duration or nectar quantity and quality (see part II in Willmer 2011a). 
Note that in our model, the attractiveness trait we consider has both an intrinsic cost for the 
plant and has a direct positive effect on the strength of the mutualism. Consequently, we 

Fig. 1  Population variation rates of plant P and pollinator A . Blue arrows indicate the density variations via 
other means than the mutualistic interaction, green arrows the effects of the mutualistic interaction, and red 
arrows the effects of intraspecific competition. Note that the plant intrinsic growth rate r

P
 is in trade-off with 

the plant attractiveness � . The parameters are described in the main text

Fig. 2  Variation of the 
attractiveness ratio �

�
max

 with the 
plant intrinsic growth rate r

P
 

depending on the trade-off 
strength. Continuous lines show 
convex trade-offs, the dashed line 
a linear trade-off, and dashed-
dotted lines concave trade-offs



Evolutionary Ecology 

1 3

only here model cases of honest signals, and leave out the evolution of cheating associated 
with these traits.

Extrapolating from previous results (Goh 1979), coexistence is stable provided:

The first two inequalities give the condition for the existence of an equilibrium point allowing 
positive densities (i.e. feasibility conditions). The last inequality ensures the stability of the equi-
librium. According to Goh (1976), in the case of two interacting species, conditions for a feasible 
and locally stable equilibrium with intraspecific interactions regulating the population densities 
implies its global stability. The globally stable equilibrium is then:

If the stability condition is not fulfilled, i.e., interspecific mutualism is stronger than 
intraspecific competition, the positive feedback loop resulting from interspecific mutual-
ism may drive the system towards infinite growth. In such cases, other limiting factors (e.g. 
pathogen, predators, or new competitors) eventually regulate the populations. Since these 
factors are not taken into account in our model assumptions, we define a maximum plant 
attractiveness �

cl
 below which stability is guarranted:

We allow the evolution of � between zero (no investment in attractiveness) and this 
maximal level 𝛼

max
< 𝛼

cl
 . We could also have controlled the infinite growth of our system 

by choosing a saturating function for the mutualistic interaction. For instance, Holland and 
DeAngelis (2010) use a saturating (Holling type II) function. The general shape of mutu-
alistic functional responses is however unknown due to the lack of empirical information. 
Our choice of a linear functional response allows explicit analytical computations and has 
the advantage to keep the model general and applicable to mutualistic interactions other 
than pollination, i.e. ant-plant, plant-rhizosphere or coral-zooxanthellae mutualisms (Toby 
Kiers et al. 2010).

Evolution of plant attractiveness

We study the evolution of plant attractiveness ( � ), assuming an allocation trade-off affect-
ing the plant intrinsic growth rate r

P
 (Willmer 2011b). Its biomass can grow either via 

a reproduction process dependent on the interaction with its mutualist (e.g. pollination) 
whose intensity is controlled by its attractiveness � , or via intrinsic growth (e.g. vegeta-
tive growth) and self-reproduction. The plant has a given quantity of energy that is divided 
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between these two growth modes (Obeso 2002; Willmer 2011b), so that we assume r
P
 to be 

a decreasing function of the attractiveness �:

The plant maximal intrinsic growth rate r
Pmax

 can, by rescaling time unit and without 
loss of generality, be fixed to one. It can then be expressed as function of its attractiveness 
as:

The s exponent controls the trade-off shape. When s = 1 there is a linear relationship 
between r

P
 and � . When 0 < s < 1 the trade-off is convex. On the opposite, s > 1 produces 

a concave trade-off (as shown in Fig. 2).
We follow the evolution of plant attractiveness using adaptive dynamics techniques 

(Dieckmann and Law 1996; Geritz et al. 1998). Under adaptive dynamics hypotheses (see 
supplementary material section A for a full description of the method and hypotheses) we 
can model the evolution of plant attractiveness and its consequences on species density 
dynamics, and the feedback of species density on the evolutionary process (Dieckmann and 
Law 1996). Evolution then proceeds by the successive invasions and replacements of resi-
dent by mutant populations. Such dynamics are approximated, given rare and small muta-
tions, by the canonical equation (Dieckmann and Law 1996):

The term 1
2
��

2
P(�) encapsulates the phenotypic variability brought by the mutation 

process on which selection can act ( � is the probability of mutation per birth and �2 the 
variance of variance of mutational steps; see Dieckmann and Law 1996). The function 
�

(
�
m
, �
)
 is the relative fitness of a rare mutant of trait �

m
 in a resident population of trait 

� . Its partial derivative, the last term of Eq. (7) defines the selection gradient. It gives the 
direction of evolution; a positive gradient selects larger attractiveness, while a negative gra-
dient selects smaller trait values. The relative fitness of the mutant is computed as the per 
capita growth rate of a rare mutant population in a resident population at ecological equi-
librium (3):

Eco-evolutionary equilibrium (called a singular strategy) occurs when the phenotypic 
trait stops varying, i.e. Equation 7 equals 0. Since its first part is always positive, it corre-
sponds to �̂� values for which the selection gradient is null:
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At singularities, costs in terms of energy dedicated to alternative means of reproduc-
tion ( dr

P
(α̂)∕dα̂ ) therefore match pollination benefits ( �

A
A
∗
(α̂) ). The existence of a singular 

strategy is not enough to guarantee that evolutionary dynamics locally lead to it (conver-
gence condition) or that it persists (non-invasibility condition, i.e. resistance to invasion by 
nearby mutants). A singular strategy that is both convergent and non-invasible is called a 
continuously stable strategy (CSS) (Christiansen 1991). Evolution toward a CSS guaran-
tees the coexistence of the two species. This and other singularity types are presented in 
Fig.  3. Calculation of the second and cross-derivative of the fitness function determines 
criteria for convergence and invasibility (Marrow et al. 1996). The mathematical computa-
tion for the existence of singular strategies and their convergence and invasibility proper-
ties are detailed in the supplementary material sections A and B.

Fig. 3  Pairwise invasibility plots (PIPs) representing the invasibility potential of a rare mutant within a resi-
dent plant population at ecological equilibrium. Grey areas indicate that the mutant relative fitness �

(
�
m
, �
)
 

is positive, so that it invades and replaces the resident population. In panels a and c, arrows show the direc-
tion of evolutionary trajectories. The system exhibits several singular strategies depending on the parameter 
values. Circles represent convergent strategies, whereas squares are non-convergent. Filled symbols repre-
sent invasible strategy, while not filled symbols are non-invasible. In panels a and b, the singular strategy 
is non-convergent and invasible (repellor). In panel c, the singular strategy is convergent and non-invasible 
(CSS). Panel d displays two strategies, one CSS and one which is non-convergent and non-invasible (Gar-
den of Eden). Parameter values are: c

A
= c

P
= �

A
= �

P
= 1 , and �

max
= 0.8 ∗ �

cl
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Equation (9) can be solved analytically for particular sets of parameters (e.g. in the lin-
ear case when s = 1 , see supplementary material section A). For other cases, we graphi-
cally determine convergence and invasibility using pairwise invasibility plots (Fig. 3). It 
is possible to show (supplementary material section B), as illustrated in Fig. 3, that among 
the particular trade-offs that we study (Eq. 6), only concave allocation trade-offs lead to 
non-invasible strategies. Therefore, CSSs, being non-invasible, are only obtained with a 
concave trade-off function. Convergence depends on the pollinator’s intrinsic growth rate 
(Fig. 3c and d). Mathematical analyses show that linear trade-offs lead to singular strate-
gies that are not convergent (supplementary material section B). In that specific case, we 
can express explicitly the formula of the attractiveness at eco-evolutionary equilibrium 
(Equation (A7) in supplementary material section A). We observe the evolution of plant 
higher attractiveness when the plant mutualistic benefit decreases ( �

P
 ) or when intraspecific 

competition increase ( c
P
 and c

A
 ). For non-linear trade-offs, convergence criteria cannot be 

solved and we rely on numerical investigations and pairwise invasibility plots (PIP). A PIP 
plot shows in grey, for a given resident trait on the x-axis, the set of mutant traits, y-axis, 
that can invade it. Evolutionary singularities occur at the intersection of the diagonal and of 
the zero-fitness contour. Whether these strategies are convergent or divergent, invasible or 
non-invasible can be deduced directly from the plot (Geritz et al. 1998).

For positive pollinator intrinsic growth rate, given concave trade-offs, we obtain only 
one convergent stable singular strategy (CSS) at which ecological coexistence is granted. 
For negative pollinator intrinsic growth rate, the system exhibits a second singular strategy 
that is a Garden of Eden (non-convergent and non-invasible), i.e. a stable strategy that can 
never be reached by nearby mutants. While the conditions of existence of multiple singu-
larities cannot be completely mathematically derived, our results suggest that it occurs for 
very concave trade-offs. The case where pollinator growth rate entirely relies on the mutu-
alistic interaction ( r

A
= 0 ) can for instance be analysed mathematically and reveals that two 

singularities will emerge when s ≥ 2 (supplementary material section C).
For convex trade-offs (Fig.  3a and b), we always observe repellors (non-convergent 

and invasible). Starting above the repellor, attractiveness increases to reach the maximum 
value ( � = �

max
 ) and the plant growth relies only on the mutualistic interaction. In that 

case plant pollination can only be maintained if pollinators are present and with a positive 
intrinsic growth rate (obligatory mutualism on the plant side). Starting below the repellor, 
attractiveness evolves to zero, so that the two species no longer interact at the end of the 
evolutionary dynamics (e.g. complete selfing or clonal reproduction). As there is no more 
interaction it is trivial that pollinators are maintained only if their intrinsic growth rate is 
positive. In the following, because we are interested in the species long-term coexistence 
with intermediate investment in the mutualistic interaction (i.e., CSS singularities), we 
only study concave trade-off functions (i.e. s > 1).

Consequences of pollinator population decline

Now that we have characterised the eco-evolutionary dynamics of the plant-pollinator 
system, we study how pollinator decline may affect its outcome. We simulate less favour-
able environmental conditions for pollinators (e.g. habitat fragmentation, pesticides, dis-
eases) by decreasing their intrinsic growth rate ( r

A
 ). We illustrate the effects of this dis-

turbance through Ecology-Evolution-Environment ( E3 ) diagrams (Dieckmann and Ferrière 
2004; Ferriere and Legendre 2013). These diagrams, presented in Figs. 4 and 5, show the 
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outcome of eco-evolutionary dynamics as a function of the environmental parameter, here 
the pollinator intrinsic growth rate r

A
 . Figure  4 exhibits two types of singular strategies 

depending on the pollinator intrinsic growth rate.
For positive pollinator intrinsic growth rates ( r

A
> 0 ), i.e. in “good pollinator environ-

ments”, we observe a convergent and stable singular strategy (CSS, continuous line). Any 
ecological system with positive r

A
 evolutionarily converges toward intermediate attractive-

ness � (arrows (1) and (2) in Fig. 4a).
For negative pollinator intrinsic growth rate r

A
< 0, i.e. in “bad pollinator environ-

ments”, we also find a non-convergent strategy, a Garden of Eden (GOE, dashed line). In 
this case, the system exhibits alternative evolutionary stable states. When plant attractive-
ness is above the Garden of Eden value, evolution converges toward the CSS, while when 
below the GOE value, selection leads to ever-decreasing attractiveness that eventually 
leads to the disappearance of the mutualistic interaction.

If we consider environmental degradation, i.e. a strong decrease of r
A
(red arrow (3) in 

Fig. 4a), in the absence of evolution, both plant and pollinator populations have positive 
biomass densities at ecological equilibrium (blue backgrounds on Fig. 4a and b). However, 
considering evolution, plant attractiveness is counter selected as pollinators are too rare to 
compensate for the intrinsic costs of attractiveness. Eventually, evolution drives pollinator 
populations to extinction; an evolutionary murder depicted by arrow (4) in Fig. 4a. Faced 
with the crash of pollinator populations, restoration attempts may be undertaken (i.e. an 
increase in r

A
 value, e.g. by suppressing pesticides or adding other plant resources for pol-

linators). Early intervention, depicted by arrow (5), can restore a stable mutualistic interac-
tion. Delayed restoration attempts (white arrow (6)), do not allow such a rescue, as evolu-
tionary trajectories will counteract their effects and lead to the extinction of the pollinator 

Fig. 4  Ecology–evolution–environment ( E3 ) diagram representing the impact of pollinator environmental 
deterioration on the evolution of plant attractiveness and on pollinator (panel a) and plant (panel b) equilib-
rium biomass densities. White areas show parameters for which extinction occurs for either plants or polli-
nators. The blue intensity correlates with population densities of pollinators (panel a) or plants (panel b). 
Black lines show the position of singular strategies; continuous lines show convergent and non-invasible 
singular strategies (CSS), and dashed lines show Garden of Edens (non-invasible, divergent). Vertical black 
arrows (1, 2, 4, 7) display the direction of evolution. Environmental disturbance is represented by a red 
arrow (3). White arrows (5, 6) represent restoration attempts at different times along the evolutionary trajec-
tory. On panel b) the red point and dotted lines represent the lowest r

A
 and �

�
max

 values for allowing a CSS, 
therefore the maintenance of the mutualistic interaction. This point is what we call an eco-evolutionary tip-
ping point. Parameters values are s = 2.5,c

A
= c

P
= �

P
= 1 , �

A
= 0.2 , and �

max
= 0.8 ∗ �

cl
 . Similar  E3 dia-

grams can be found in Dieckmann and Ferrière 2004; Ferriere and Legendre 2013
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(arrow (7)). Note that here we separate timescales for simplicity, and consider that dete-
rioration and restoration are fast compared to the evolutionary dynamics, hence horizontal 
arrows for these environmental changes.

Finally, we study how trade-off shapes and asymmetry of mutualistic gains affect the 
eco-evolutionary outcome (Fig. 5). With increasing concavity, the minimum value of pol-
linator intrinsic growth rate r

A
 that allows for a CSS decreases (red dots on Fig. 5), increas-

ing the coexistence domain (i.e. interval of r
A
 values that allows species coexistence at an 

intermediate interaction level). More concave trade-offs therefore allow a larger coexist-
ence domain up to negative values of r

A
 (Fig. 5b, c, e, f, h, i). For less concave trade-offs, 

s < 2, only a positive pollinator intrinsic growth rate r
A
 allows coexistence (Fig. 5a, d, g). 

Negative pollinator intrinsic growth rates lead to small benefits for the plant, so that attrac-
tiveness is counter selected, eventually leading to the pollinator extinction. For stronger 
concave trade-offs, s > 2, (Fig. 5b, c, e, f, h, i) we observe qualitatively the same dynamics 

Fig. 5  Influence of trade-off shape and mutualistic gains on eco-evolutionary dynamics. Columns differ in 
trade-off concavity. Lines differ in the asymmetry of mutualistic gains: in the top line (panels a, b, and c) 
pollinators benefit more than plants; the middle line (panels d, e, and f) shows equal gains while in the bot-
tom line plant gains are larger (panels g, h, and i). Red point and dotted lines represent the lowest r

A
 and �

�
max

 
values for allowing a CSS and the maintenance of the mutualistic interaction. Colours and lines are the 
same as in Fig. 4. The parameter values are c

A
= c

P
= 1 and �

max
= 0.8 ∗ �

cl
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as in Fig. 4. For those trade-offs, asymmetric mutualistic gains favouring pollinators allow 
a larger range of disturbance, including negative intrinsic growth rates r

A
 , before attractive-

ness is counterselected and extinction occurs. Therefore, an increased mutualistic gain of 
the pollinator relative to that of the plant facilitates the long-term coexistence of the plant-
pollinator system. This produces a more robust system that eases a potential restoration 
process. Note, however, that favouring pollinators’ gain over plants leads to lower selected 
levels of attractiveness (compare Fig. 5 a, b, c vs g, h, i). The same figure but with the plant 
density at ecological equilibrium can be found in the supplementary material section D. 
Apart from very high values of investment in attractiveness with strongly negative pollina-
tor growth rates, plant density is always positive.

Discussion

While from a one species perspective, evolution can help to avoid extinction by foster-
ing adaptation and restoring positive growth rates (evolutionary rescue), we here show an 
example in which accounting for mutualistic interactions largely modifies this optimistic 
view. Here, the evolution of one species in response to disturbances acting on its mutual-
istic interactor selects a further decrease in the interactor population, eventually leading 
to the demise of the mutualistic interaction. This shows that evolution within mutualistic 
systems can actually be detrimental to the system’s persistence and could undermine res-
toration attempts. Because we have used a general model of mutualism, this mechanism 
may concern various systems. This clearly suggests that when investigating the impact of 
global changes, we need to account for eco-evolutionary dynamics of the species and their 
interactors.

The model we use is deliberately simple to allow a more complete mathematical study 
of eco-evolutionary dynamics and to highlight the role of key parameters (e.g. trade-off 
shapes or mutualistic gains). However, it may be linked to other models that study various 
types of mutualism. For instance, considering pollination systems and plant reproduction, 
in line with the presentation of the results, our model recalls previous theoretical works on 
plant evolution that detail further the reproductive implications (e.g. Cheptou and Mas-
sol 2009; Lepers et  al. 2014; Astegiano et  al. 2015). For instance, Lepers et  al. (2014) 
explicitly modelled the evolution of a plant reproduction system by taking prior selfing and 
inbreeding depression into account. In particular, they showed that evolution toward high 
prior selfing (for us of lesser attractiveness) leads first to pollinator extinction (our evolu-
tionary murder). Because they also model the cost resulting from the inbreeding depres-
sion, they show that this evolutionary murder may further lead to the extinction of the plant 
population. However, the model we propose may also be adapted to consider other mutu-
alistic systems. For instance, in plant-mycorrhizae interactions, a resource exchange takes 
place, where plants provide carbon-based resources (e.g. sugars) to mycorrhizae while 
they get nutrients from the interaction. Such a situation does fit our hypotheses. The trait 
� would then be the quantity of resources provided by the plant (i.e., its investment in the 
mutualistic interaction), and this production diverts resources from growth and reproduc-
tion, therefore fitting our trade-off hypotheses. As such, our model recalls the results of a 
study by De Mazancourt and Schwartz (2010). They show that mutualism can arise and 
be evolutionarily selected from a two-species competing model by including trading. Each 
species can trade the resource it extracts in excess with the other. In our system, this trad-
ing would correspond to the benefit �� provided by the mutualistic interaction. Depending 
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on the resource availability (the intrinsic growth in our model) the plant can either perform 
better on its own (possibly at the detriment of the fungi, as in our model) or can benefit 
from the mutualistic association with a mycorrhizal fungus. The mutualistic trading inter-
action can extend the coexistence boundaries, i.e. the resource space the two species can 
live in.

We are aware that the linear Lotka-Volterra structure of our model and the adaptive 
dynamics methods impose specific working hypotheses that can constrain the applicability 
of our model (e.g. ecological equilibrium between small mutation steps, asexual reproduc-
tion, panmixia). Our model is a better fit for specific reproduction types like that of gei-
tonogamous species. Models that put into equations specific types of mutualistic interac-
tions can better explicit the different biological processes at stake and have a more realistic 
view of the mechanisms, e.g. Fishman and Hadany pollination model (2010). They show 
that a complex and biologically detailed resource trade mutualism can be approximated by 
a Beddington–DeAngelis formula for trophic interactions. However, the previously cited 
more complex models (Cheptou and Massol 2009; De Mazancourt and Schwartz 2010; 
Lepers et al. 2014; Astegiano et al. 2015) find a disinvestment in mutualism with declining 
efficiency similar to the one observed in our simple and more general model, coherent with 
the results from the experimental evolution studies (Bodbyl Roels and Kelly 2011; Gervasi 
and Schiestl 2017). They can better detail the potential consequences of this disinvestment 
on the interactors for a specific mutualistic type.

Our results also highlight that mutualistic interactions could be more or less vulnerable 
to environmental changes and population declines. For instance, here, only concave allo-
cation trade-offs between plant intrinsic growth rate and investment in mutualism lead to 
the maintenance of the mutualistic interaction. These trade-offs favour intermediate invest-
ments in the mutualistic interaction, while in the case of convex trade-offs, either complete 
investment or no investment is eventually selected, depending on initial conditions. We 
kept our study general because trade-off shapes are extremely difficult to measure in vivo, 
and can vary deeply depending on the environment or the species types (Reekie and Baz-
zaz 2011).

Bistability and critical transitions have been highlighted in a variety of ecological situ-
ations (e.g. Dercole et al. 2002; Scheffer and Carpenter 2003 in mutualistic system), and 
result from a strong positive feedback loop. Here we have a similar phenomenon but on 
an eco-evolutionary scale. If the evolved investment in mutualism before environmental 
deterioration is above a certain threshold, evolution reinforces the interaction, by increas-
ing the attractiveness values, eventually leading to a stable, coexisting system. On an eco-
logical scale, this interaction reinforcement increases the abundance of both species, which 
in turn favours the evolution of the focal species investment toward higher value. Below a 
critical level of evolved investment, the population of the mutualistic partner species is low. 
Evolution then further decreases investment in mutualism, eventually leading to complete 
disinvestment in the mutualistic interaction. This runaway selection for decreased invest-
ment leads in our case to the evolutionary murder of the partner population by the evolving 
species (Dieckmann et al. 1995). Note that the trade-off shape modulates the strength of 
the positive feedback loop. More concave trade-offs decrease the threshold value above 
which interaction is maintained, thereby facilitating the persistence of the system. Such 
dynamics have important implications. For instance, consider pollination as the mutualistic 
interaction. Current data suggest large decreases in pollinator abundances (Biesmeijer et al. 
2006). Such pollinator declines are often considered to be directly linked to environmental 
changes (e.g. habitat change, pesticides in Potts et al. 2010). However, our results suggest 
that evolutionary components may also be present. If these declines favour plant strategies 
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that offer less resources, plant evolution may enhance the observed declines. In line with 
these predictions, empirical observations suggest a decline of flower resources parallel to 
the pollinator decline (Biesmeijer et al. 2006).

On a management side, alternative stable states and critical transitions have large impli-
cations, as systems may then shift abruptly, and large restorations are needed to recover pre-
vious states (Scheffer and Carpenter 2003). The eco-evolutionary alternative stable states 
we describe here have similar implications. Restoration can either be a reduction of the 
mortality causes of the declining species (banning pesticide, ploughing controlling pests 
and predators) or the increase in their alternative resource source (plant sowing or nutri-
ent addition). Here we consider that restorations are faster than evolutionary timescales. 
Evolution can, however, act fast (Gervasi and Schiestl 2017), while restoration timescales 
largely vary from a few months (e.g. sowing high reward plants) to much longer timescales. 
Changes in pesticide regulations and applying these regulations may require national or 
international consensus. Similarly, while a change in the agricultural mode does occur (e.g. 
from intensive to agroecology), its dynamics happen over decades, while the evolution of 
plant rewards may happen in just a few generations (Gervasi and Schiestl 2017). Note that, 
were we to consider longer restoration attempts, we would still observe eco-evolutionary 
tipping points in our system. Such tipping points also make restoration attempts more dif-
ficult from two different points of view. First, the timing of the attempt becomes important. 
Restoration is only successful when achieved before the threshold attractiveness is evolved. 
Second, if the system becomes degraded, a small restoration attempt may not be sufficient 
to recover large populations, but large efforts will have to be undertaken.

While in the face of current changes in the environment, evolution can play a key role 
in restoring populations and maintaining diversity, our results suggest that in the case 
of mutualistic interactions, evolution may also favour strategies that eventually further 
threaten species coexistence. As such, our model echoes recent analyses that highlight 
the evolutionary fragility of mutualisms, given current changes (Toby Kiers et  al. 2010; 
Loeuille 2019). Because our model is deliberately simple, restricted in its number of inter-
action types and species, we expect evolutionary effects in complex ecological networks 
to be more complex and context-dependent. However, we expect that accounting for these 
covariations of evolutionary dynamics and changes in ecological interactions will be 
important, and that the effects of evolution will then not systematically be positive.
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Electronic Supplementary material 
A) The adaptive dynamics method 

In this part the symbol ∗ signal the ecological equilibrium and ❑
^

 the evolutionary one. 

The Canonical Equation 
Adaptive dynamics rest on a series of hypotheses. This method models explicitly the evolutionary 

consequences on species density dynamics, and the feedback of species density on the evolutionary 

process (Dieckmann and Law 1996; Geritz et al. 1998). Evolution occurs via small mutation steps 

between which plant and pollinator densities reach the ecological equilibrium. Adaptive dynamics also 

assume clonal reproduction and a small phenotypic impact of the mutations. The differential equation 

describing the evolution of the phenotypic traits, known as the canonical equation (Dieckmann and 

Law 1996), is given by:  

𝑑𝛼
𝑑𝑡 =

1
2𝜇𝜎

"𝑃∗(𝛼)
𝜕𝜔(𝛼$, 𝛼)
𝜕𝛼$

0
%!→%

 (A1) 

As explained in the main text the term '
"
𝜇𝜎"𝑃∗(𝛼) corresponds to the phenotypic variability brought by 

the mutation process; with 𝜇 the per individual mutation rate, 𝜎" the variance of the mutation 

phenotypic effect, and 𝑃∗(𝛼) the plant equilibrium density. The last term is the selective gradient and 

represents the effects of natural selection, via variations of the relative fitness of mutants 𝛼$ given a 

resident population of attractiveness 𝛼. Therefore, the sign of the selective gradient gives the direction 

of evolution; a positive gradient selects larger attractiveness, while a negative gradient selects smaller 

trait values. The relative fitness of a mutant at a very low density is explicitly derived from the 

ecological dynamics (equation (1) in main text). It is computed as the per capita growth rate of a rare 

mutant population in a resident population at ecological equilibrium : 



𝜔(𝛼$, 𝛼) =
1
𝑃$
𝑑𝑃$
𝑑𝑡

0
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= 𝑟((𝛼$) − 𝑐(𝑃∗(𝛼) + 𝛼$𝛾*𝐴∗(𝛼), (A2) 

with 𝑃$ the mutant population density, 𝑃∗(𝛼)and 𝐴∗(𝛼) given by equation (3) in the main text. 

Remember that, due to the allocation costs, the plant intrinsic growth rate varies with the level of 

attractiveness𝑟((𝛼). 

The singular strategies 
Eco-evolutionary dynamics (equation A1) may exhibit equilibrium points, called evolutionary singular 

strategies. They correspond to trait values at which equation (A1) is at equilibrium, i.e., trait variation 

goes to zero. 

Trait variations are given by the Canonical equation (A1). Because the first part of this equation is 

positive, the direction of trait variations is entirely determined by the selection gradient. When it is 

positive, higher trait values are selected, while negative selection gradients lead to smaller traits. Here 

the selection gradient corresponds to the slope of the fitness function A2 at the resident trait 𝛼, given a 

small variation in the trait𝛼$. 

𝜕𝜔(𝛼$, 𝛼)
𝜕𝛼$

=
𝑑𝑟((𝛼$)
𝑑𝛼$

+ 𝛾*𝐴∗(𝛼), (A3) 

Because of the hypothesis of small mutations, this yield: 
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+ 𝛾*𝐴∗(𝛼), (A4) 

 Because all other terms of the Canonical Equation (A1) are positive, the evolutionary singular strategy 

(𝛼
^
) correspond to trait values at which the selection gradient is null: 
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+ 𝛾*𝐴∗(α9) = 0, (A5) 



with 𝑟((𝛼) defined by equation (6) and 𝐴∗ by equation (3) in the main article. 

 

This means that a singularity is obtained only when costs in terms of energy of alternative means of 

reproduction (./"(%!)
.%!

;
%!,%→,-

) match the benefits in terms of pollination of increased attractiveness 

(𝛾*𝐴∗(α9)). 

Replacing 𝑟(, we obtain: 

𝜕𝜔(𝛼$, 𝛼)
𝜕𝛼$

0
%!,%→,-

=
−< α9

𝛼$23
=
4
<1 − < α9

𝛼$23
=
4
=
'
45'

α9 + 𝛾*
α9𝛾(𝑟((α9) + 𝑐(𝑟*
𝑐*𝑐( − α9"𝛾*𝛾(

= 0, 
(A6) 

In the linear case (i.e. when 𝑠 = 1), the singular strategy formula is: 

α9 =
𝑐((𝑐* − 𝛼$23𝛾*𝑟*)

𝛼$23𝛾*𝛾(
 (A7) 

This solution is feasible (i.e. positive and in a plausible range value), with 𝛼$23 < 𝛼67as defined in 

equation (4) of the main text, if and only if 0 < 𝑐* < 𝛼$23𝛾*𝑟*; i.e. the intraspecific competitive losses 

need to stay below the maximal energetic gain of the animal.  

In this linear case, increasing plant or animal losses or decreasing animal intrinsic growth rate (within 

the conditions for a feasible solution) will increase the singular strategy value, meaning that when these 

losses are high or the animal intrinsic growth low the plant invest more in the mutualistic interaction. 

On the contrary higher gains from the mutualistic interaction will lead into a lower investment in the 

plant attractiveness at eco-evolutionary equilibrium. 

Aside from its existence, a singular strategy can be an endpoint of evolution if convergent 

(evolutionary dynamics locally lead to it) and non-invasible (it persists in time because of a resistance 



to invasion by nearby mutants). The mathematical computation for the existence of singular strategies 

and their convergence and invasibility properties are given in the following part. 

B) Convergence and invasibility properties of the singular 
strategies 

The conditions for invasibility 
With the trade-off function defined in main text equation (5) we can differentiate the fitness function a 

second time to analyse the convergence and invasibility of the singular strategies, to deduce the overall 

trait dynamics (Dieckmann and Law 1996). The singular strategy (𝛼
^
) is non-invasible, i.e. an ESS 

(Maynard Smith, 1982) when: 

𝜕𝜔"(𝛼$, 𝛼)
(𝜕𝛼$)"

7
%!,%→,-

=
(1 − 𝑠) < α9

𝛼$23
=
4
<1 − < α9

𝛼$23
=
4
=
'
45"

α9" < 0 
(B8) 

  

Concave trade-offs (𝑠 > 1) therefore lead to non-invasible singular strategies, while convex trade-offs 

(𝑠 < 1) yield invasible strategies. 

In the case of a linear trade-off equation (B8) is equal to 0, the strategy is neutral from an invasibility 

point of view. 

The conditions for convergence 
The previous equation, summed with the crossed derivation of the fitness function gives conditions for 

convergence of the singular strategy (Dieckmann and Law 1996). The singular strategy is convergent 

when: 

 



𝜕𝜔"(𝛼$, 𝛼)
(𝜕𝛼$)"

7
%!,%→,-%!,%→,-

+
𝜕𝜔"(𝛼$, 𝛼)
𝜕𝛼𝜕𝛼$

7
%!,%→,-

< 0 (B9) 

 

The above-mentioned formula requires the calculation of the cross-derivation. Using results from 

equation (A3) , and with small mutation close to the singular strategy (𝛼$, 𝛼 → 𝛼
^
), it gives: 

𝜕𝜔"(𝛼$, 𝛼)
𝜕𝛼𝜕𝛼$

7
%!,%→,-

= 𝛾*
𝑑𝐴∗ B𝛼

^
C

𝑑𝛼  (B10) 

 

According to the formula of 𝐴∗(α9)given in equation (3) of the main article, the previous equation is 

equivalent to: 

𝜕𝜔"(𝛼$, 𝛼)
𝜕𝛼𝜕𝛼$

7
%!,%→,-

=
𝛾*𝛾(D2𝑐(𝛾*𝑟*α9 + (𝑐*𝑐( + α9"𝛾*𝛾()𝑟((α9) + α9(𝑐*𝑐( − α9"𝛾*𝛾()𝑟(′(α9)F

(𝑐*𝑐( − α9"𝛾*𝛾()"
 

(B11) 

with 𝑟((α9) defined by equation (6) in the main article, and 𝑟(′(α9) = 𝑟((α9)
'

,-8'59 #$
%!&'

:;
(). 

The sum of equation (B11) at the eco-evolutionary equilibrium (i.e. when 𝛼$23 , 𝛼 → α9) and (B8) is 

however too complex in the general case to give a simple to understand the convergence condition (as 

required by equation B9) 

In the linear case (i.e. when 𝑠 = 1), equation (B11) at the eco-evolutionary equilibrium becomes: 

 

𝜕𝜔"(𝛼$, 𝛼)
𝜕𝛼𝜕𝛼$

7
%!,%→,-

=
𝛾*𝛾( G𝑐*𝑐( + α9"𝛾*𝛾( + 2𝑐(α9 B𝛾*𝑟* −

𝑐*
𝛼$23

CH

(𝑐*𝑐( − α9"𝛾*𝛾()"
 (B12) 



Because then equation (B8) <=
*(%!,%)
(<%!)*

;
%!,%→,-

= 0, the convergence condition then depends only on the 

above cross derivation (B12). 

According to equation (A7), 𝛾*𝑟*–
6+

%!&'
= 5,->+>"

6"
, equation (B12) when s=1 is equal to: 

𝜕𝜔"(𝛼$, 𝛼)
𝜕𝛼𝜕𝛼$

7
%!,%→,-

=
𝛾*𝛾(

(𝑐*𝑐( − α9𝛾*𝛾()"
J𝑐*𝑐( + α9"𝛾*𝛾( − 2𝑐(α9

α9𝛾*𝛾(
𝑐(

K (B13) 

Which, when simplifying gives: 

𝜕𝜔"(𝛼$, 𝛼)
𝜕𝛼𝜕𝛼$

7
%!,%→,-

=
𝛾*"𝛾("

(𝑐*𝑐( − α9𝛾*𝛾()"
− J

𝑐*𝑐(
𝛾*𝛾(

− α9"K (B14) 

Note that 6+6"
>+>"

= 𝛼67" . Because α9 < 𝛼$23 < 𝛼67, when α9 exist, the above derivation is always positive, 

meaning that a linear trade-off always leads to a divergent singular strategy. 

C) Effect of the trade-off shape on the number of singular 
strategies 

 

We prove in this section that 𝑠 = 2 (concave trade-off) is a threshold for the existence of a second 

singular strategy in the case 𝑟* = 0. 

For	𝑟* = 0the singular strategies are the solution of the following equation (obtained by setting 𝑟* =
0	in equation (A6)): 

𝜕𝜔(𝛼$, 𝛼)
𝜕𝛼$

0
%!,%→,-,/+?)

=
𝑟((α9)('54) <α9"𝛾*𝛾( − <

α9
𝛼$23

=
4
𝑐*𝑐(=

α9(𝑐*𝑐( − α9"𝛾*𝛾()
= 0 (C15) 

 

If 𝑠 > 1, then α9 = 0 is always a solution. Now we can study the existence of a second non-zero 

singular strategy, which is then the solution of: 



α9"𝛾*𝛾( = <
α9

𝛼$23
=
4

𝑐*𝑐( (C16) 

The solution can be explored geometrically, but we first need to rewrite the equation as follow: 

α9" = <
α9

𝛼$23
=
4 𝑐*𝑐(
𝛾*𝛾(

= <
α9

𝛼$23
=
4

𝛼67"  (C17) 

Remember that the stability conditions impose that 6+6"
>+>"

= 𝛼67" > 𝛼$23" . Now, we can plot the left and 

the right side of equation (C17) as a function of 𝛼
^
and the solution is given at the crossing of the two 

curves (figure C1). Note that only the right side depends on the value of the trade-off parameter𝑠. 

Figure C1, shows that if 1 < 𝑠 ⩽ 2there exists a unique solution that is α9 = 0. This is because the right 

side is always larger than the left side for α9 > 0. Now, if	𝑠 > 2, there exists a second solution, which is 

α9 = N %,-
*

%!&'
)

)(*
. This proof that at the value 2 = 𝑠	there is a branching from one to two singular 

strategies. Now, the nature of the two strategies needs to be explored numerically, as well as how it 

extends to negative values of 𝑟* < 0. 



 

Figure C1: geometry 
representation of equation (C17). The black line represents the left side of equation (C17), while the 
right side is given by the dashed line for two different values of the trade-off shape parameters 𝑠. 



D) Supplementary figures 

 

E) References 

Figure D1: Influence of trade-off shape and mutualistic gains on 𝐸@ diagrams. As in figure 5 in the 
main text, columns differ in trade-off concavity. Lines differ in the asymmetry of mutualistic gains: in 
the top line (panels a, b, and c) pollinators benefit more than plants; the middle line (panels d,e, and f) 
shows equal gains while in the bottom line plant gains are larger. Red points and dotted lines represent 
the lowest 𝑟* and %

%!&'
 values for maintaining a CSS, allowing the maintenance of the mutualistic 

interaction. Colours and lines are the same as in figure 4 in the main text. The parameter values are 
𝑐* = 𝑐( = 1 and 𝛼$23 = 0.8 ∗ 𝛼67. 
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