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Abstract2

Pollination plays a central role both in the maintenance of biodiversity and in crop production.3

However, habitat loss, pesticides, invasive species, and larger environmental fluctuations are con-4

tributing to a dramatic decline of numerous pollinators world-wide. This has increased the need5

for interventions to protect the composition, functioning, and dynamics of pollinator commu-6

nities. Yet, how to make these interventions successful at the system level remains extremely7

challenging due to the complex nature of species interactions and the various unknown or un-8

measured confounding ecological factors. Here, we propose that this knowledge can be derived9

by following a probabilistic causal analysis of pollinator communities. This analysis implies the10

inference of interventional expectations from the integration of observational and synthetic data.11

We propose that such synthetic data can be generated using theoretical models that can enable12

the tractability and scalability of unseen confounding ecological factors affecting the behavior of13

pollinator communities. We discuss a road map for how this probabilistic causal analysis can be14

accomplished to increase our system-level causative knowledge of natural communities.15
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Introduction16

Pollinators comprise a highly diverse group of species including bees, flies, butterflies, beetles,17

and some vertebrates [1]. They all have in common a shared interest in visiting flowers to extract18

resources, collectively and indirectly mediating the reproduction of most of the worldwide plant19

species [2] and maximizing crop production for 75% of cultivated crops [3]. Hence, pollination is20

now recognized not only as a key ecosystem function, but also as a key ecosystem service con-21

tributing to human food security. However, human induced rapid environmental change has been22

threatening most of these pollinators [4]. On the one hand, habitat destruction and modification23

is reducing the populations of many pollinator species, often leading to local extirpation. On the24

other hand, some other species can thrive in human modified ecosystems, but those often face25

extra pressures such as pesticide exposure, exotic species, or pathogens. In top of that, climate26

change is altering species’ physiological responses, distribution, and activity periods [5]. Overall,27

we are assisting to a rapid restructuring of pollinator communities world-wide, where their rela-28

tive abundance, composition, and ecological interactions are being modified with hard to predict29

consequences for their health.30

These human pressures on pollinator communities have increased the need for human interven-31

tions to protect the composition, functioning, and stability of pollinators and their interactions32

[6]. These interventions include from well established practices such as habitat protection, to more33

complex actions such as the addition or removal of particular species and their interactions [7].34

For example, planting field margins [8] or adding managed pollinators [9] have become, respec-35

tively, popular restoration practices in agricultural systems to increase resources for pollinators or36

supplement crop pollination. However, these practices often ignore side effects, such as the effects37

of changes in micro-climate conditions or pathogen prevalence on pollinator health. For instance,38

a recent study has shown that bumblebees’ occupancy patterns in Europe and North America are39

sensitive to temperature [10]. Similarly, it has been shown how managed pollinator densities not40

only increases competition among pollinators [11], but also increases parasite loads [12], which41

can spillover to other species [13]. Yet, as of today, we lack a community-wide framework to guide42

interventions beyond single species. Indeed, it has been shown that even small local interventions43

(i.e., at the species level) can have heterogeneous and arbitrary cascading effects across entire44

communities [14]. This has emphasized the dire need to establishing a system-level causative45

knowledge of pollinator communities.46

To address the challenge above, ideally, we need to establish well-defined experiments eliminat-47

ing all sources of bias (e.g., using randomized controlled trials) and test the effectiveness of a48

given intervention [15]. However, those sources of bias become extremely difficult to identify49

and measure in changing natural ecological communities conformed by several co-occurring and50

interacting species [16]. Moreover, many of these interventions may not be ethical (e.g., species51
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removal) or feasible to perform because pollinators move freely and are difficult to track. This52

implies that it is instead necessary to obtain interventional knowledge from observational data53

(e.g., field studies or partially controlled studies) using causal-inference analysis [17]. These ob-54

servational data (that record for example the observed presence/absence of pollinators) differ55

from fully controlled studies (that remove or add pollinators) in the sense that observational56

variables are the result of what is perceived and not of what is intervened by the investigator.57

Importantly, these observational data are typically confounded by unknown factors (also known58

as noise, context, or environmental conditions), such as biotic and abiotic variables, making dif-59

ficult to differentiate between spurious and actual cause-effect relationships. To circumvent this60

problem, we propose that interventional knowledge can be inferred from the integration of ob-61

servational and synthetic data. These synthetic data can be generated using theoretical models62

that can enable the tractability (operationalization and reproducibility) and scalability (gener-63

alization across dimensions) of unseen confounding factors acting at the community level. This64

framework can provide a probabilistic knowledge of how likely is a given cause to generate a65

target effect within a pollinator community (i.e., focusing on the probability of causes instead of66

effects). In the reminder, we discuss a road map for how this probabilistic causal analysis can be67

accomplished and illustrate it with a case study.68

Observational data: known factors69

Given the lack of systematically controlled experiments, observational data from field studies or70

quasi-controlled experiments (where few factors may be controlled) can provide the raw material71

to understand the behavior (e.g., composition, dynamics) of a community. This behavior comes72

in the form of a joint probability distribution PV over a set of relevant variables V. For example,73

studies may record any aspect of community composition as a function of a set of semi-controlled74

variables such as the presence (or density) of specific pollinators [18], their floral resources in-75

cluding both the identity of interacting plant species [19] and plant chemical composition [20–22],76

top down regulators including pathogen [23] and predators [24], as well as several environmental77

variables such as temperature [25, 26] or pesticide exposure [27, 28]. These observational studies78

can be either for a specific period of time (across different locations) or measure pollinator com-79

munities repeatedly over time in order to capture a wider range of temporal conditions affecting80

pollinators’ population trajectories, which often follow non-linear dynamics [29, 30].81

While observational data are designed to track potential mechanisms affecting pollinator commu-82

nities, they cannot establish cause-effect relationships by themselves, only associations [15, 17].83

That is, following Reichenbach’s principle [31], if two variables (X,Y ) are statistically related,84

then there exists a third variable or set of variables (Z) that causally influenced both (known85

as confounding effect: X ← Z → Y ). In some situations, Z coincides with either X or Y (i.e.,86
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Z = X or Z = Y ), establishing a causal link between X and Y (i.e., X → Y or Y → X).87

But without knowledge of Z (or when this unknown effect cannot be blocked from the analysis),88

we cannot safely conclude cause-effect relationships. Thus, conditional distributions (e.g., PY |X)89

derived from observational data can coincide with causal mechanisms (e.g., X → Y ), but not90

necessarily. Similarly, two variables (X,Y ) may be statistically related if both are the common91

(confounding) causes of a given effect Z (i.e., X → Z ← Y : known as collider in the causal-92

inference literature [15]) upon which the data is selected (known as selection bias). This problem93

typically arises when data is filtered or conditioned by Z and X 6⊥⊥ Y |Z, but X⊥⊥Y |{∅} (6⊥⊥ and94

⊥⊥ denote dependence and independence, respectively). Moreover, in a multivariate system, the95

sources of bias can be originated from direct and indirect common causes and effects. These prop-96

erties make extremely problematic the interpretation of relationships derived from multivariate97

regression and meta-analysis that do not have a causal hypothesis [32].98

For example, let us assume that pollinator abundance is caused by flower abundance, temperature,99

and some unknown factors. Similarly, let us assume that flower abundance is caused by water100

availability, temperature, and a subset of the same unknown factors. Then, in a multivariate101

regression model that includes all factors (except for the unknown) as potential explanations of102

pollinator abundance, it is likely that water availability will have a strong explanatory effect over103

pollinator abundance (even though we are conditioning over flower abundance). This happens104

for the reason that flower abundance introduces a selection bias (collider) between water and the105

unknown factors, which then gets propagated to pollinator abundance following the cause-effect106

relationships. Note that flower abundance cannot be eliminated from the regression model ei-107

ther, because it is needed to partially block the path between water availability and pollinator108

abundance. This type of examples also illustrates that prediction is different from explanation109

[33]. Therefore, to infer cause-effect relationships in this example, it is needed to have more110

information about the underlying causal story and the corresponding unknown confounding fac-111

tors. In the next sections, we will discuss how to use synthetic data derived from theoretical112

models to account for confounding unobserved variables, and then how to generate interventional113

distributions (knowledge) from observational and synthetic data.114

Synthetic data: unknown factors115

The role of theoretical models has been understood as a formal platform to establish logico-116

mathematical postulates (formal statements) about how the real-world possibly behaves and to117

obtain data that can be difficult to generate empirically [34–36]. These postulates are, of course,118

tautological as they are analytically (or algorithmically) derived from a set of primary principles.119

It is only possible to falsify these postulates based on their biological interpretation. Thus, the120

value of theoretical models is to provide hypotheses, predictions, generalization, and systematic121
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links between model parameters (the interpretable factors/context) and the behavior of a system,122

which can then be revised based on empirical information. The interpretation of theoretical mod-123

els (model parameters) can range from highly mechanistic to highly phenomenological depending124

on the level of resolution under investigation [37]. For example, mechanistic interpretations are125

based on detailed descriptions of ecological processes, such as metabolic rates, nutrients uptake,126

mobility patterns, predation processes, and behavioral patterns, among others [38, 39]. In turn,127

phenomenological interpretations are based on summary outcomes that are expressed in terms128

of model parameters without establishing any specific statement about how exactly these out-129

comes come to existence (e.g., intrinsic growth rates, species interactions, and death rates, among130

others). In general, there is no one better model than another (unless there is knowledge about131

the actual processes and there is capacity to obtain the initial conditions), it all depends on the132

research question and system under investigation.133

Regarding pollinator communities (and ecological communities in general), there are two impor-134

tant properties that need to be considered if one aims to study theoretically and systematically135

the factors under which several interacting species can coexist [40]: tractablity and scalability.136

We define tractability as the property of a theoretical model to have all its potential solutions137

fully operationalized, defined, measured, and reproduced over relatively short periods of time (i.e.,138

polynomial time), enabling a systematic understanding between solutions and parameter values.139

For example, the Londsdorf [41] model uses only land use parameters to directly explain pollina-140

tor densities following a simple equation. Instead, complex models characterized by higher-order141

polynomials are limited by their intractability (e.g., optimal foraging models [40, 42, 43]). In142

fact, it has already been proved that it is impossible to write analytically (a closed-form algebraic143

solution) a polynomial system with degree five or higher with arbitrary coefficients (unknown144

values) [44]. Note that a simple 3-species system (e.g., two pollinators and one plant) with Type145

II functional responses (i.e., a non-linear response such as those observed in density-dependent146

processes arising from competition for floral resources or pathogen spillover) can already form a147

polynomial of degree eight [45]. This intractability of complex models implies that if the majority148

of their parameter values are not known a priori (reducing the system to a polynomial of degree149

four or lower), these models can only be used numerically (simulations). Then, the problem that150

arises is that it becomes computationally impossible to differentiate the role played by each pa-151

rameter (e.g., interactions, environmental conditions) in the solutions of the system [40]. While152

studies have attempted to tackle this complexity by using statistical methods such as Akaike153

Information Criterion [46], the number of solutions of a polynomial system does not necessarily154

depend on the number of parameters but on the polynomial degree [45]. Hence, it is not just155

the lack of data that limits the use of complex models, as it can be perceived [47], it is their156

intractability, especially in high-dimensional systems [40].157
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In turn, we define scalability as the property of a model to establish clear and invariant rules158

across dimensions, enabling extensions from simple to complex natural communities. For ex-159

ample, the Lonsdorf model [41] is designed to track central place foragers (e.g., bees), where a160

key piece of the model is the foraging range from a central point in the landscape; but it is not161

scalable to wanderers (e.g., flies and butterflies), which move freely over the landscape tracking162

resources. Similarly, it has been demonstrated that insights derived from classic work on coexis-163

tence using 2-species Lotka-Volterra models cannot be directly extrapolated to higher dimensions164

[48]. Therefore, simple phenomenological or simple mechanistic models can be understood as the165

simplification (reduction of polynomial degree and free parameters) of complex models to enhance166

the tractability and scalability of a system. However, it is central to fully understand how they167

should be used.168

For instance, generic phenomenological models can be written in the form Ṅ = Nf(N,U), where169

Ṅ represents the time derivative of species density, and f is a given function describing the170

relationship among endogenous N variables and contextual parameters U [36]. Note that having171

the vector N in front of the function f guarantees the impossibility of negative densities (or species172

revival without immigration). A classic phenomenological model that follows this formalism is173

the linear Lotka-Volterra (LV) model [49, 50]: Ṅ = N(r + AN), where r typically represents174

species intrinsic growth rates and A is the so-called interaction matrix (summarizing the positive175

or negative per capita effect of one species upon individuals of another species). While the linear176

LV model can be derived from first principles, such as energy conservation or thermodynamic177

limits, it can be phenomenological interpreted as the first-order approximation (derived from178

the Taylor expansion) of the unknown function f [35]. This can then make the elements of the179

linear LV model to be interpreted as endogenous variables N, a set of time-invariant interaction180

parameters summarized in A, and contextual parameters r. This interpretation allows both181

the tractability and scalability of a multispecies community. That is, the analytical solution182

is N∗ = −A−1r (setting Ṅ = 0), making possible the one-to-one mapping between N∗ and r183

[51]. This means that the constraints imposed by A on contextual factors r to generate a given184

endogenous behavior N∗ can be systematically analyzed regardless of the number of species in185

the system.186

Importantly, tractable and scalable models become good candidates towards increasing our system-187

level causative understanding of pollinator communities. Indeed, by conceptualizing the function188

f above as an approximation to a structural causal model [15, 17] (i.e., X = fX(VX,UX), where189

fX is a time-invariant function defining the cause-effect relationships of X, VX is the set of causes190

of X, and UX is the random noise/context affecting X defined by PUX), it is possible to obtain191

theoretical probability distributions of unknown factors U (e.g., r in the LV model) compatible192

with a given behavior of N∗ as dictated by a set of invariant rules (e.g., A in the LV model).193
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For example, in the linear LV model, by assuming that r ∈ RS (where S is the dimension of the194

system) is a priori randomly and uniformly distributed (conforming with ergodicity and inde-195

pendence from initial conditions [52]), it is possible to calculate analytically the range of feasible196

unknown conditions (i.e., U ⊆ r and PU) leading to a given set of species (i.e., I ⊆ R, where R197

is the set of species within a community) with positive densities at equilibrium (N∗I > 0) [53, 54].198

Moreover, we can calculate the expected number of species with positive densities at equilibrium199

E[N∗ > 0] (or the probability of persistence of each single species within a community) [52]. Note200

that if A is also derived from a probability distribution (i.e., PA), the range of feasible unknown201

conditions remains characterized by PU. Importantly, extracting these conditions requires the202

inference (empirical parameterization) of invariant rules (e.g., A). While challenging, it has been203

shown that this properties can be approximated with commonly available data, such as species204

abundances or presence/absence data [14, 55–58]. We provide a case study in the last section.205

Probability of causes206

While observational data per se are not enough to obtain a causative knowledge about pollina-207

tor communities, they can be translated into interventional distributions using causal-inference208

techniques [15, 17]. Recently, promising causal-inference methods have been developed, such as209

inverse modelling approaches [59, 60] or empirical dynamical modeling [61], but these methods210

require large amounts of data which for several reasons can be difficult to obtain. To partially211

circumvent this problem, we propose that probabilistic causal-inference approaches [15] used in212

economics, social science, and medicine can be good candidates for inferring interventional dis-213

tributions (i.e., how likely is a given cause to generate a target effect) in pollinator communities.214

First and foremost, probabilistic causal inference requires a causal graph involving the set of215

relevant variables (nodes) V (e.g., V = {X,Y }, X → Y ) upon which to test causal relationships216

(edges) [15]. These graphs serve as a guideline (testable hypothesis) to understand the potential217

paths linking causes and effects, which are necessary to study in order to eliminate spurious218

associations (due to confounding and selection bias). In general, causal graphs should be drawn219

based on expert knowledge or intuition about how the world works, and should not be drawn220

based on the observed correlations on data (otherwise, it will be circular). These graphs act as a221

hypothetical causal story, which can be followed after identifying and corroborating its testable222

implications expressed as unconditional and conditional independencies between variables (in223

causal-inference analysis, this is called d-separation of variables [15]). For instance, a lack of224

correlation between two variables in any context does not immediately invalidate a potential225

direct causal link (since we cannot be sure of having sampled all potential values within the sample226

space); however, a lack of correlation in all contexts after conditioning by a potential confounder227

(i.e., X 6⊥⊥ Y |{∅}, but X⊥⊥Y |Z) does support the hypothesized causal graph X ← Z → Y (i.e.,228
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no direct causal effect between X and Y ). Remember that a correlation between two variables229

is not enough evidence to support a potential causal link. Thus, causal graphs inform about230

both the likely dependencies and established independencies between variables. If the data do231

not corroborate the causal graph, then a new causal story must be drawn and tested.232

Causal graphs are nonparametric by construction since they do not depend on the specific form233

of causal relationships, they only specify the (lack of) existence of a causal relationship between234

variables. While most of the standard work on probabilistic causal inference has been developed235

for directed acyclic graphs (no mutual causality or feedback processes), cyclic graphs can also236

be analyzed, especially under equilibrium conditions [62]. Importantly, these causal graphs need237

to take into account both observed and unknown common factors (typically, these unknown238

factors can be and are excluded from the graph if they are all mutually exclusive [15]). In239

some situations, the potential confounding effects of unknown factors (context) can be eliminated240

using standard causal-inference techniques (e.g., using the so-called front-door and back-door241

criteria, or using latent variables [15]). Note that latent variables are typically used in structural242

equation modeling assuming linearity for all variables [17, 63]. However, when these unknown243

common factors cannot be eliminated or linearity cannot be assumed or validated, we propose to244

approximate these factors by deriving them from theoretical models (as explained in the previous245

section). Specifically, these unknown factors can be characterized by PU, an expected value, or246

can be transformed into binary variables using heuristic rules [52, 54, 57]. We provide a case247

study in the following section.248

The translation from observational distributions to interventional distributions is rooted on do-249

calculus [15], which are the rules for moving from observations to interventions using the causal250

graph. That is, causal inference moves (whenever identifiable) from the probabilistic association251

P(y|x) to the probabilistic causal association P(y|do(x)), where y is the value of the potential252

effect Y and x is the value taken after the intervention on the inferred cause X. The nomenclature253

do(x) implies that we are not just merely observing X to take the value of x, but we need to254

make it have it (e.g., removing a species from a community). This action is then represented in a255

modified causal graph by eliminating all the incoming edges (causes) from an intervened variable256

(since its value is no longer dependent on mechanisms, but on a given action). It is typically257

assumed that mechanisms P(y|do(x)) are independent from each other, invariant, and follow the258

arrow of time (i.e., causes before effects), allowing to apply probabilistic Markov properties (i.e.,259

each variable is independent from its non-causal variables–known as ancestors–given its causes—260

known as parents [15]).261

Given a directed acyclic causal graph G and disjoint variables X,Y, Z and W (these variables262

can also be empty sets), do-calculus involves three rules to move from observational to interven-263

tional distributions (see Figure 1) [15]: (1) Insertion/deletion of observations: P (y|do(x), z, w) =264
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P (y|do(x), w) if (Y⊥⊥Z|X,W )G
X

, where GX is graph G after the removal of all the incoming edges265

to X. This rule establishes the conditions under which it is possible to remove conditional vari-266

ables from the analysis. (2) Action/observation exchange: P (y|do(x), do(z), w) = P (y|do(x), z, w)267

if (Y⊥⊥Z|X,W )G
XZ

, where GXZ is graph GX after the removal of all the outgoing edges from Z.268

This rule establishes the conditions under which it is possible to replace additional actions (acting269

as confounders) with observational data. (3) Insertion/deletion of actions: P (y|do(x), do(z), w) =270

P (y|do(x), w) if (Y⊥⊥Z|X,W )G
XZ(W )

, where Z(W ) is the set of Z-variables that are not ancestors271

of any W -variable in GX . This rule establishes the conditions under which it is possible to remove272

additional actions (acting as confounders) from the analysis. Note that while path analysis [17]273

can be used instead of do-calculus, only the latter is a nonparametric framework that can be used274

with any sort of data without making any assumptions.275

X Y

W

Z

X Y

W

Z

X Y

W

Z

Original Graph

X Y

W

Z

X Y

W

Z

X Y

W

Z

Modified Graph

Rule 1
If

Rule 2

Rule 3

If

If

Figure 1: do-calculus. The translation from interventional P (do(x)) to observational P (x)
distributions can be achieved following the rules of do-calculus [15]. The figure depicts the three
do-calculus rules on a graph G with disjoint variables X,Y, Z and W (see main text). Rule 1
is used for insertion/deletion of observations. Rule 2 is used for action/observation exchange.
Rule 3 is used for insertion/deletion of actions. Here, GX is graph G after the removal of all the
incoming edges to X, GXZ is graph GX after the removal of all the outgoing edges from Z, and
Z(W ) is the set of Z-variables that are not ancestors of any W -variable in GX . Note that ⊥⊥ and
| denote independence and conditional on, respectively. The graphs in the left column vary for
illustration purposes of each rule.

Case study276

We illustrate some of the concepts above using the following example. Figure 2 depicts a hypo-277

thetical, directed, acyclic, causal graph to study the within-season pollinator abundance dynamics278
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of a pollinator community [30, 64]. Specifically, in the example, we study how the relative abun-279

dance of flowering plants at a given time t (noted as A and measured as the ratio between the280

number of plant species and pollinator species at time t) affects the rate of change of the pollina-281

tor community at time t+1 (noted as B and measured as the absolute difference in the pollinator282

community between time t + 1 and t, and divided by the observation at time t, providing a283

detrended measure). In addition, the causal graph (Fig. 2) assumes that temperature affects284

both A and B (written as C and measured as the mean temperature at time t). Note that C285

also works as a trend factor. Finally, we also assume that unknown factors D (the context) act286

as confounding effects of A and B. Following the concepts expressed in the previous section, we287

propose (see below for details) to quantify the unknown factors D using synthetic data derived288

from the linear LV model (i.e., PU⊆r) leading to the presence of the observed pollinator com-289

munity at time t (i.e., N∗I > 0). Integrating observational and synthetic data, the graph in Fig.290

2 is complete and informs us about the variables that need to be blocked (controlled for) using291

do-calculus in order to infer the cause-effect relationships between observed variables. Note that292

it is assumed that each of these variables is random in the sense that they are all affected by293

mutually exclusive independent noise, allowing us to omit this other type of variables from the294

causal graph [15].295

To put numbers to this example, we use publicly available data recording species interactions296

between pollinators and flowering plants on a daily basis (whenever weather allowed) in a high-297

arctic site during the springs of 1996 and 1997 [30, 64]. These data allow us to directly measure298

variables A, B, and C above for a given observed day t. To measure the theoretical context (D)299

for each day t, we first inferred the daily interaction matrices At and then measure the fraction300

of conditions compatible with the persistence of all observed pollinators ω(At). To infer At, we301

use a niche-based inference [58, 65], which is one of the simplest methods yet well ecologically302

motivated. Specifically, we use the monopartite projection Mt = Bt
T Bt, where Bt is the binary303

matrix for day t formed by the observed pollinators as columns and observed plants as rows. This304

binary matrix has entries Bki = 1 if the pollinator i is observed interacting with plant k, otherwise305

Bki = 0. In turn, the off-diagonal entries of Mt correspond to the number of plant resources306

shared between two pollinator species. The higher the resource overlap between pollinators i and307

j (i.e., the value of Mij), the higher their level of competition. By normalizing the entries of Mt308

by the sum of their column (Aij = Mij∑
Mij

), we infer a pollinator competition matrix At for each309

time t.310

To infer ω(At) [30], we calculate the fraction of intrinsic growth rates (U ⊆ r) leading to the daily311

set of competing pollinators according to a (tractable and scalable) linear LV model. Specifically,312

we calculate this as:313
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ω(At) =
(

2Stvol(DF (At) ∩ BSt)
vol(BSt)

) 1
St

,

where vol(BS) is the volume of the normalized St-dimensional parameter space of intrinsic growth314

rates (r) at day t, 2St normalizes the parameter space to the positive orthant (because for sim-315

plification we are summarizing the pollinator community as a competition system, all intrin-316

sic growth rates are restricted to positive values), and vol(DF (At) ∩ BS) corresponds to the317

volume of the intersection of the the parameter space with the feasibility domain: DF (At) =318 {
U = N∗1 v1 + · · ·+N∗SvS , with N∗1 , . . . , N

∗
St
> 0

}
, where vi is the ith column vector of the in-319

teraction matrix At [54]. Thus, ω(At) ∈ [0, 1] is a probabilistic measure, which can be efficiently320

computed and compared across dimensions [30, 54].321

A: Observed Biotic
(relative plant 
abundance)

B: Pollinator 
community 
variability

C: Observed Abiotic
(temperature)

D: Unknown 
Context

(Synthetic)

Path CA: -8% If A=1, Path CB: 3%
If A=0, Path CB: -13%

Path AB: 30% 

Figure 2: Illustrative example of cause-effect relationships of a phenological process in a pollinator
community. However, this effect needs to be separated from potential confounders. The figure
depicts a directed acycylic causal graph, where each box (node) corresponds to a random variable,
and each edge corresponds to a direct causal effect. We consider that each causal relationship is
autonomous and independent from the others. Each node is a random variable since it is also
assumed that mutually exclusive random noise affects each node. Following do-calculus rules (see
text and Fig. 1), for three paths, we show the estimated change in probability of observing a high
value (above the median of the population) given a high value of its direct cause (see text). The
variables in this graph should not be always equated to the variables in Figure 1. For example,
variable C can be equivalent to variable X or Z in Figure 1 depending on the rule applied.

Similar to path analysis in structural equation modeling [17, 63], to apply probabilistic causal322

inference with continuous data, it can be possible to use linear regressions (or Pearson correlations)323

if it is assumed that the effects are linear, monotonic, and noise is Gaussian. Spearman rank324

correlations can be used if at least monotonicity is achieved. Instead, nonparametric tools can325
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be used whether or not these assumptions above are fulfilled. While nonparametric tools provide326

generality and should be preferred, their application to continuous data can be rather challenging.327

Thus, whenever possible, the data can be discretized [15]. Here, for illustration purposes, we328

transform all our variables into binary values, using the median of each variable (per year) as329

the cut-off value: values higher that the median are considered one, otherwise zero. While this330

may be perceived as a disadvantageous simplification, it actually allows us to efficiently work on331

a general nonparametric framework (i.e., using probability distributions).332

We test the causal graph shown in Figure 2. Here, the only testable d-separation (conditional333

or unconditional) is between temperature (C) and context (D). That is, there is no direct334

path between these two variables, and their path gets naturally blocked (no need to condition on335

anything) by A and B, which act as colliders. This d-separation can be tested by the unconditional336

independence as P (d|c) = P (d). Using a G2-test (χ2-test can also be used for binary data or337

permutation tests [15, 17]), we found no statistical relationship between C and D (p = 0.39,338

lower values indicate dependence). Note that if the hypothesis would not have been supported339

by d-separation, a new causal graph must be drawn and tested. Below, we compute the effects of340

temperature on the relative abundance of flowering plants (Path CA), the effect of temperature341

on community variability (Path CB), and the effect of relative abundance of flowering plants on342

community variability (Path AB).343

The interventional distribution (probability of cause) of Path CA is written as P (a|do(c)). This344

causal relationship can be inferred using observational distributions following rule 2 of do-calculus.345

That is, we can write P (a|do(c)) = P (a|c) by setting Y = A, Z = C, and W = X = ∅ in Figure346

1. Because we are using binary variables, the average causal effect [15] of c on a (i.e., ACECA)347

is given by ∂
∂w E[A|do(c)] and can be written as ACECA = P (a = 1|c = 1)− P (a = 1|c = 0). We348

found that ACECA = −0.08, meaning that if temperature is high (i.e., above the population me-349

dian) there is a decrease in probability of 8% that the relative plant abundance will be high (i.e.,350

above its population median). However, using a G2 test, we found that this effect is not largely351

different (p = 0.56) from what would be expected by chance alone given the data. In turn, the in-352

terventional distribution of Path CB can be calculated as P (b|do(c), do(a)). Note that Path CB is353

mediated by A, which needs to be controlled for. However, conditioning (i.e., P (b|do(c), x)) opens354

the collider between C and D, creating a spurious association between C and B. To eliminate this355

noise, it is then necessary to intervene on A (i.e., do(a)). Using marginalization and the Markov356

property, we can write P (b|do(c), do(a)) =
∑

d P (b, d|do(c), do(a)) =
∑

d P (b|do(c), do(a), d)P (d).357

Following rule 2 twice (setting first Z = A, Y = B, X = C, and W = D; and second Z = C,358

Y = B, X = ∅, and W = {A,D} in Fig. 1), we can write
∑

d P (b|c, a, d)P (d). In this case,359

we can perform two separated analyses: one for a = 1 and the other for a = 0. We found that360

for a = 1, ACECB = 0.03 (G2 test: p = 0.43). While for a = 0, ACECB = −0.13 (G2 test:361
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p = 0.008). This implies that under high flower abundance, temperature has almost no effect on362

pollinator variability. Instead, under low flower abundance, if temperature is high (i.e., above the363

population median), there is a decrease in probability of 13% that the variability of the pollinator364

community will be also high (i.e., above its population median).365

Finally, following the methodologies above, we calculate the effect of relative plant abundance366

on community variability (Path AB) as P (b|do(a)) =
∑

cd P (b|a, c, d)P (c, d). We found that367

ACEAB = 0.30 (G2 test: p = 0.06), meaning that if relative plant abundance is high (i.e.,368

above the population median) there is an increase in the probability of 30% that the community369

variability will be high (i.e., above its population median). It is worth mentioning that if we do370

not take into account the context (D), the causal effect of A (relative flower abundance) on B371

(pollinator community variability) can be overestimated ACEAB = 0.86 (G2 test: p = 0.003),372

leading to potential prediction errors of interventions. It is also important to mention that a373

linear multivariate regression of B on all the other three variables (using normalized data instead374

of binary) produce qualitatively similar results as the ones reported above. While this equivalence375

between nonparametric and parametric methods is not expected to be always true [15], working376

under a causal hypothesis (as we have done here) can establish a more informative regression377

analysis that can then be translated into causal analysis under the assumption of linearity.378

This example is not intended to demonstrate a general effect and serves only for illustration379

purposes. For example, we try to explain a fairly simple community metric such as changes380

in overall relative abundance. Furthermore, many more variables can be explicitly taken into381

account (instead of being summarized in the unknown confounding factors), such as abundance382

of pathogens, herbivores, chemical compounds, humidity, etc, and it is important to identify the383

main players in line with the hypothesized causal graphs. Moreover, it is important to note384

that the theoretical model has also sensible assumptions, such as that resource overlap among385

pollinators is a good proxy of competition. We hope future work can build on this to establish386

causal knowledge at the pollinator community-level.387

Conclusions388

It has long been recognized that causation does not always coincides with correlation. This389

premise has been extensively applied when studying the behavior (i.e., variables) of complex390

natural systems, where multiple factors can be responsible for the patterns observed in nature.391

This has not been an exception when investigating pollinator communities. As a consequence,392

the majority of work has carefully stated correlations, which respond to what do we see in nature.393

However, in the face of rapid environmental change, we need to take bolder research programs and394

answer the questions of why and when the behavior of pollinator communities is affected. These395

goals can be achieved by conducting experimental studies. Nevertheless, manipulating all factors396
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related to the behavior of entire pollination communities can be unrealistic. Instead, these goals397

can be achieved by using causal-inference techniques. Yet, very often these techniques cannot398

be applied due to the nature of the causal story and the unknown/unmeasured factors acting399

as confounders. While not exhaustive, here we have provided a brief overview of how to apply400

probabilistic causal inference from the integration of observational and synthetic data. We propose401

that synthetic data can be used as a proxy for unknown confounding factors by deriving them402

from theoretical models that attain the desired properties of tractability (provide a systematic403

link between model parameters and solutions) and scalability (can be applied across dimensions).404

At the very least, we hope this overview can illustrate that a causal probabilistic analysis can405

allow us to speak the causal language in pollination studies that for long has been prevented by406

the dominance of multivariate regressions and meta-analyses without causal hypotheses [32].407
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