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Abstract
1. A major challenge in ecological research is to identify the tolerance of ecologi-

cal communities to external perturbations. Modern coexistence theory (MCT) has 
been widely adopted as a framework to investigate the tolerance to perturbations 
in relative reductions of per capita growth rates, often using metrics that explicitly 
eliminate the independent role of intrinsic growth rates. More recently, the struc-
tural approach (SA) was introduced to investigate the tolerance of communities to 
perturbations in intrinsic growth rates as a function of the strength of intraspe-
cific and interspecific competition. Because the external perturbations are likely 
to happen in both intrinsic growth rates and competition strengths, no framework 
alone can fully disentangle the effects of external perturbations.

2. Here we combine MCT and SA to disentangle the tolerance in coexistence and 
priority effects of a pair of competing species when subject to perturbations in  
intrinsic growth rates and competition strengths. Through this combination, we 
reveal the emergence of a key trade-off: increasing the tolerance to perturba-
tions in intrinsic growth rates typically decreases the tolerance in competition 
strengths, and vice versa. Furthermore, this trade-off is stronger under coexist-
ence than under priority effects.

3. We test this combined framework on competing pairs of 18 California annual 
plant species. For both coexistence and priority effects, we find that the tolerance 
to perturbations in intrinsic growth rates is maximized instead of that to perturba-
tions in competition strengths in the studied annual plant communities.

4. Synthesis. Our combined framework of modern coexistence theory and structural 
approach illustrates that it is possible to disentangle the impact of different ex-
ternal perturbations on the persistence of species. Importantly, our findings show 
that species interactions may reveal whether communities are dominated either 
by changes in intrinsic growth rates or by competition strengths. Overall, this 
combined framework can open a new perspective to understand and predict the 
response of populations to changing environmental conditions.
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1  | INTRODUC TION

Understanding the conditions leading to species coexistence and 
priority effects has long been a central research topic in community 
ecology (Fukami, 2015; Levine, Bascompte, Adler, & Allesina, 2017; 
Morin, 2009; Vellend, 2016). Coexistence occurs when multiple 
species persist within the same location for a continuous period of 
time (Case, 2000; Hofbauer & Sigmund, 1998). In contrast, priority 
effects occur when the dynamics of the community are governed 
by the order of species arrivals (Chase, 2003; Fukami, 2015; Song, 
Altermatt, Pearse, & Saavedra, 2018). The majority of theoretical 
studies have addressed this topic by focusing on the necessary and/
or sufficient conditions compatible with coexistence or priority ef-
fects assuming that model parameters (e.g. intrinsic growth rates 
and competition strengths) are fixed (Barabás, D’Andrea, & Stump, 
2018; but see Vandermeer, 1975). Nonetheless, model parameters 
(either mechanistic or phenomenological) change in response to un-
avoidable external perturbations (Dirzo et al., 2014; Levins, 1968; 
Scheffers et al., 2016; Tucker & Fukami, 2014), leading to the nat-
ural question of how robust coexistence and priority effects are to 
changes in model parameters. Our ability to address this question 
has been shaped by two different frameworks—modern coexis-
tence theory (MCT; Chesson, 2018) and the structural approach (SA; 
Saavedra, Rohr, et al., 2017).

Modern coexistence theory (Chesson, 2000, 2018) has been 
widely adopted as a framework to investigate the conditions lead-
ing to species coexistence and has more recently been extended 
to priority effects (Fukami, Mordecai, & Ostling, 2016; Grainger, 
Letten, Gilbert, & Fukami, 2019; Ke & Letten, 2018; Levine & 
HilleRisLambers, 2009; Mordecai, Molinari, Stahlheber, Gross, & 
D’Antonio, 2015). In particular, MCT shows that coexistence occurs 
when the effects of niche overlap exceed the effects of biasing the 
fitness ratio on the inferior species. Likewise, MCT has shown that 
priority effects occur when the effects of destabilizing mechanisms 
(such as positive frequency dependence) exceed the effects of bias-
ing the fitness ratio for the superior competitor (Ke & Letten, 2018; 
Schreiber, Yamamichi, & Strauss, 2019). Importantly, MCT allows us 
to understand the robustness of coexistence to random perturba-
tions in relative reductions in per capita growth rates (Barabás et 
al., 2018). A pair of competitors can be located in the parameter 
space (of relative reductions in per capita growth rate) relative to the 
boundary between coexistence and exclusion. The further into the 
coexistence region a pair lies, the more robust coexistence would be 
to changes in the average fitness or niche overlap of the competi-
tors. Analogous predictions can be made for priority effects. Yet, the 
metrics in MCT (such as niche overlap and fitness ratio) are often cal-
culated based on competition coefficients scaled by intrinsic growth 
rates, which explicitly eliminate the independent role of intrinsic 
growth rates (HilleRisLambers, Adler, Harpole, Levine, & Mayfield, 
2012; Pérez-Ramos, Matías, Gómez-Aparicio, & Godoy, 2019).

More recently, the SA (Saavedra, Rohr, et al., 2017) was intro-
duced to investigate the range of intrinsic growth rates compatible 
with coexistence and priority effects, as a function of the absolute 

reductions in per capita growth rate (a.k.a. competition strengths; 
Cenci, Song, & Saavedra, 2018). The region of coexistence is  
described by an angle anchored at the origin of a plot whose x and 
y axes are the intrinsic growth rates of the two competitors. The 
wider the angle, the greater the range of intrinsic growth rate differ-
ences between competitors compatible with coexistence. The angle 
becomes a solid angle or cone in a higher dimension for communi-
ties containing more than two competitors (Song, Rohr, & Saavedra, 
2018). In this way, SA is specifically designed to understand the ro-
bustness of a community—as a function of competition strengths—
to random changes in the intrinsic growth rates of the constituent 
species.

Because external perturbations are likely to happen in both the 
intrinsic growth rates and competition strengths (either simultane-
ously or separately), here we argue for a combination of MCT and SA 
focused on parameter changes (perturbations). SA and MCT measure 
different aspects of the robustness of coexistence (priority effects): 
SA has thus far been developed with only perturbations to the in-
trinsic growth rates in mind (the robustness as a function of compe-
tition strengths); MCT has been developed with the idea of potential 
simultaneous changes in parameters, but merging them into a single 
parameter (relative reductions in per capita growth rate). Note that 
intrinsic growth rates and competition strengths are phenomeno-
logical summaries of different abiotic and biotic factors (Cadotte & 
Tucker, 2017; Coulson et al., 2017; Levins, 1968; MacArthur, 1970), 
and they play different fundamental roles in shaping the dynamics 
of multispecies systems (Cenci & Saavedra, 2018; Song & Saavedra, 
2018a, 2018b). Therefore, achieving a combination of MCT and SA 
is challenging because the metrics in the two approaches are not di-
rectly translatable (appendix S5 in Saavedra, Rohr, et al., 2017). Yet, 
instead of translating their metrics, we propose to investigate how 
the angle describing the intrinsic growth rates compatible with co-
existence (priority effects) in SA changes as a function of the niche 
overlap and fitness ratio in MCT.

Our combination of MCT and SA focuses on two-species com-
petition dynamics. While SA can be used for two-species and mul-
tispecies communities within the same formalism (Saavedra, Rohr, 
et al., 2017), here we focus on two-species dynamics given that the 
canonical formalism of MCT is explicitly justified for two-compet-
ing species (Barabás et al., 2018; Chesson, 2018; Song, Barabás, 
& Saavedra, 2019; Spaak & DeLaender, 2018). Note that MCT can 
also be applied to multispecies communities, but the formalism and 
definitions are different (Barabás et al., 2018; Song et al., 2019). 
Nevertheless, the results obtained for two-species communities are 
valuable for both theoretical and empirical research (Case, 2000). 
From a theoretical perspective, the combination of MCT and SA 
not only could allow us to disentangle the role played by intrinsic 
growth rates and competition strengths in shaping coexistence and 
priority effects but also could offer a new perspective to understand 
the tolerance of ecological communities to the effects of simulta-
neous external perturbations on different model parameters. From 
an empirical perspective, because two-species dynamics has been 
and continues to represent the most feasible experimental system 
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(Adler, Fajardo, Kleinhesselink, & Kraft, 2013; Bimler, Stouffer, Lai, 
& Mayfield, 2018; Cardinaux, Hart, & Alexander, 2018; Chu et al., 
2016; Germain, Mayfield, & Gilbert, 2018; Godoy, Kraft, & Levine, 
2014; Grainger et al., 2019; Kraft, Godoy, & Levine, 2015; Levine & 
HilleRisLambers, 2009; Li, Tan, Yang, Ma, & Jiang, 2018; Mayfield & 
Levine, 2010; Mordecai et al., 2015; Narwani, Alexandrou, Oakley, 
Carroll, & Cardinale, 2013; Pérez-Ramos et al., 2019), this combina-
tion of theoretical tools can be easily applied to gain new insights 
about the robustness of ecological communities to changing envi-
ronmental conditions.

The manuscript is organized as follows. First, building upon 
two-competing species dynamics, we briefly introduce the funda-
mentals of MCT and SA. We show why each framework alone can-
not fully disentangle the roles played by intrinsic growth rates and 
competition strengths. Then, we show how the metrics from MCT—
the stabilizing and equalizing mechanisms—relate to the solid angle 
of SA. Achieving this combination of tools requires both advanc-
ing SA to simultaneously vary multiple parameters (as in MCT) and  
revisiting MCT to untangle the contribution of model parameters  
(as in SA). Importantly, we show that the equalizing mechanism 
(based on fitness ratio) exhibits a key trade-off between toler-
ance to perturbations in intrinsic growth rates and in competition 
strength. We show that this trade-off is stronger under coexistence 
than under priority effects. Next, we apply our study to an empirical 
dataset of annual plant assemblages. We show that in these exper-
imental systems, the tolerance to perturbations in intrinsic growth 
rates (but not in competition strengths) is maximized. Last, we pro-
vide a discussion about the limitations and future research avenues 
derived from our work.

2  | T WO - COMPETING SPECIES DYNAMIC S

2.1 | Dynamics

Many population dynamics of two-competing species have been 
proposed (e.g. Case, 1999; Tilman, 1982; Turchin, 2003). Arguably, 
the simplest dynamics is the classic Lotka–Volterra (LV) dynamics 
(Case, 1999). The formulation of LV reads as (other equivalent pa-
rameterizations or formalisms can be found in Appendix S1).

where the variable Ni represents the abundance of species i, the pa-
rameters ri > 0 and αii > 0 correspond to the intrinsic growth rate and 
the self-regulation (or intraspecific competition) of species i, respec-
tively, and α12 > 0 and α21 > 0 are the corresponding interspecific com-
petition strengths (a.k.a. absolute reductions in per capita growth rate).

Importantly, despite the simplicity of LV dynamics, all the main 
results here apply to a much larger class of two-competing species 
dynamics, including saturating competition dynamics (Brauer & 

Castillo-Chavez, 2011), time discrete LV dynamics (Saavedra, Rohr, 
et al., 2017), consumer-resource dynamics (Letten, Dhami, Ke, & 
Fukami, 2018; Song et al., 2019) and annual plant dynamics (Godoy & 
Levine, 2014; Hart, Turcotte, & Levine, 2019). Note that the strength 
of species competition in these dynamics can also be expressed in 
terms of nonlinear functional responses (Cenci & Saavedra, 2018).

2.2 | Coexistence

The necessary and sufficient conditions for the coexistence of the 
two competing species are given by the two following inequalities 
(Song & Saavedra, 2018b; Vandermeer, 1975):

The two inequalities, α21/α11 < r2/r1 and r2/r1 < α22/α12, grant 
that species 1 and 2 can mutually invade given r2/r1—what we call 
the ratio of intrinsic growth rates. In a two-dimensional system, 
this possibility grants that species can have positive abundance at 
equilibrium, viz. feasibility (Case, 2000). Consequently, these two in-
equalities imply the third inequality α21/α11 < α22/α12, which ensures 
that the dynamics would converge to the equilibrium starting from 
any initial species abundance, viz. global stability. Note that the third 
inequality can be deduced from the first two inequalities, but the in-
verse is not true. Because these conditions guarantee the existence 
of a unique, stable, feasible, fixed point, species coexistence is not 
determined by the order of species arrival.

Traditionally, these inequalities have been graphically illustrated 
on the state (abundance) space of the system given by Equation 1 
(Case, 2000). Following this classic representation, Figure 1 shows 
how the parameters have to be combined such that the two non-trivial  
zero-growth isoclines fall inside the coexistence area. For given generic 
values of K1 = r1/α11 and K2 = r2/α22—known as carrying capacities, the 
inequality r2/r1 < α22/α12 is equivalent to having species 1 zero-growth 
isocline crossing the N2 axis above species 2 zero-growth isocline, and 
similarly for the inequality α21/α11 < r2/r1. The global stability condi-
tion α21/α11 < α22/α12 is equivalent to having the slope of species 1  
zero-growth isocline steeper than the one of species 2 so that they 
cross within the coexistence area (Case, 2000). Note that the borders 
on the axes of Figure 1 (as well as the region where the two zero- 
growth isoclines would cross outside the positive abundances quad-
rant) correspond to the case of unfeasible equilibria, where one species 
out-competes the other species—also known as border equilibria. Pure 
neutrality lies in the intersection between the stability–instability bor-
der and the fitness equivalence line (Song et al., 2019).

2.3 | Priority effects

Figure 1 also shows how the parameters should be combined such 
that the dynamics exhibit priority effects (Case, 2000). Recall that 

(1)
⎧
⎪
⎨
⎪⎩

dN1

dt
=N1(r1−!11N1−!12N2)

dN2

dt
=N2(r2−!21N1−!22N2),

(2)
!21

!11
<
r2
r1

<
!22

!12
.
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priority effects in a two-species LV system correspond to the ecologi-
cal case when the first arriving species (assumed to be at its carrying 
capacity) always excludes the second arriving species that tries to in-
vade (considered to have lower abundance)—due to the instability of 
the feasible fixed point. Mathematically, priority effects are equiva-
lent to the existence of a feasible but unstable equilibrium point in this 
system. Thus, the necessary and sufficient conditions to have priority 
effects are the opposite of the coexistence inequalities (Equation 2):

Similar to the coexistence case, we can geometrically inter-
pret these priority effects inequalities as follows. The inequality 
α21/α11 > r2/r1 is equivalent to have species 1 zero-growth iso-
cline crossing the N2 axis below species 2 zero-growth isoclines, 
and similarly for r2/r1 > α22/α12. In turn, the dynamical instability 
condition α21/α11 > α22/12 is equivalent to have the slope of spe-
cies 2 zero-growth isocline steeper than that of species 1—such 
that they cross within the priority effects area. Note that there 
is a feasible equilibrium point (i.e. the isoclines cross inside the 

positive quadrant of species abundances), but the equilibrium 
point is unstable.

3  | MODERN COE XISTENCE THEORY

3.1 | Coexistence

To investigate the conditions leading to species coexistence, MCT 
(Chesson, 2013) has reformulated the classic two-species LV compe-
tition system (Equation 1) as,

In Equation 4, the intrinsic growth rates ri (dimension: time−1) are 
the same as the ones in Equation 1. However, the relative competition 
strength !ij (dimension: biomass−1 or abundance−1) is different from 
αij (dimension: time−1·biomass−1 or time−1·abundance−1). Here, !ij rep-
resents the per capita effect of species j on the per capita growth 
rate of species i relative to its intrinsic growth rate (i.e. reductions 
in per capita growth rate relative to the maximum per capita growth 
rate). In other words, !ij and αij represent the relative and absolute 
reductions in per capita growth rate, respectively. These parameters 
are related by the formula !ij=!ij∕ri.

Note that mixing up these two parameterizations above (both 
are equally called competition strengths in the literature) can lead 
to apparently contradictory results. For instance, MCT states that 
two competing species will coexist as long as the species depress 
their own growth more strongly than they depress the growth of 
the other species, which can be interpreted as αii > αji (Chesson, 
2013, 2018). However, if one considers r1 = 1 and r2 = 2, Equation 2 
becomes α21/α11 > 1/2, and α12/α22 > 2, in which case, species 1 can 
depress its own growth less strongly than it depresses the growth of 
the other species, and yet both species can coexist. The statement 
of MCT holds only for the relative reductions in per capita growth 
rate defined by !ij, that is, !ii>!ji, which embed the intrinsic growth 
rate into the competition strength. Similarly, it has been stated that 
the role of intrinsic growth rates in coexistence does not appear to 
be fundamental (Chesson, 2018). However, it can be proved that 
!ij are not sufficient to determine the dynamical behaviour beyond 
two-species population dynamics (Poincaré–Bendixson theorem: 
Strogatz, 2014; see Appendix S2 for a detailed discussion).

Then, under MCT, the coexistence criteria (Equation 2) for a 
two-species LV competition system are given by

where !=
√
"12"21∕"11"22=

√
"12"21∕"11"22 is called the niche over-

lap, and 
√
!11!12∕!22!21 is called the fitness ratio (Bartomeus & Godoy, 

2018; Chesson, 2018). Note again that the fitness ratio apparently 

(3)
!21

!11
>
r2
r1

>
!22

!12
.

(4)
⎧
⎪
⎨
⎪⎩

dN1

dt
=N1r1(1−!11N1−!12N2)

dN2

dt
=N2r2(1−!21N1−!22N2).

(5)!<

√
"11"12

"22"21

<
1

!
,

F I G U R E  1   Coexistence and priority effects. State (abundance) 
space of two-competing species. Species 1 zero-growth isocline is 
defined as r1 = α11N1 + α12N2, and its slope corresponds to −α11/α12. 
We can write a symmetric equation for species 2. These isoclines 
(dotted lines) correspond to the non-trivial set of abundances 
where species per capita growth rate is zero. The intersection 
of these two isoclines defines an equilibrium point (N∗

1
,N∗

2
). The 

carrying capacity Ki = ri/αii is the abundance that species i reaches 
when the competition strength is zero (αij = 0). Within the state 
space, we can define the coexistence area (top blue region) and the 
priority-effect area (bottom orange region). That is, keeping the 
carrying capacities fixed, depending on where the two isoclines 
cross, the two species can either exhibit coexistence or priority 
effects. Note that the grey line divides the region of stability (top 
region) and instability (bottom region). The red line represents the 
fitness equivalence line, and in dashed, its extension to priority 
effects
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F I G U R E  2   Modern coexistence theory (MCT) and the structural approach (SA). The dynamics correspond to the Lotka–Volterra model 
(Equation 1). (a) MCT. Fitness ratio and niche overlap space for coexistence and priority effects. The figure represents the four different 
outcomes of the dynamical system as a function of the fitness ratio and niche overlap (fitness ratio is on log ratio). The vertical red line is the 
border between the stability–instability area (ρ = 1). The coexistence area is deduced from the inequalities in Equation 5 (i.e. Equation 8), 
while priority effects are deduced from the inequalities in Equation 6. The arrows illustrate the direction in which the competition strengths 
need to move inside the fitness ratio and niche overlap space to act as stabilizing and equalizing mechanisms. The grey line represents the 
stability–instability border. (b, c) SA. Quantifying structural stability of coexistence and priority effects under perturbations in intrinsic 
growth rates. For a competition system, the full effective space of intrinsic growth rates is the quarter unit circle in the positive quadrant 
(Song, Rohr, et al., 2018), which is depicted in grey. The blue (orange) area corresponds to the domain of coexistence (priority effects) within 
the effective parameter space, as defined by Equations 2 and 3. Note that the two borders (depicted as purple and green lines) switch 
between coexistence and priority effects. The feasibility domain (normalized solid angle) Ω is defined as the angle between the two borders. 
The region Ω can be increased as the borders move along with the directions of arrows. The red line represents the fitness equivalence line, 
and in dashed, its extension to priority effects

Q Q

(a)

(b) (c)
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does not depend on the intrinsic growth rates ri, but recall that they are 
implicitly embedded into !ij. Hence, the stability condition for stable 
coexistence is equivalent to ρ < 1.

Consequently, MCT identifies two ecological mechanisms under 
which two species can achieve coexistence: the equalizing mecha-
nism (

√
!11!12∕!22!21 approaches 1) and the stabilizing mechanism 

(ρ approaches 0). The stabilizing mechanism increases the range of 
fitness ratios leading to coexistence, while the equalizing mechanism 
tends to centre the fitness ratio within the given range of niche overlap. 
Typically, these inequalities are represented by the blue area within the 
two-dimensional space made by the niche overlap and the fitness ratio 
axes (Figure 2a). Hence, the stabilizing mechanism can be seen on this 
fitness ratio–niche overlap space as horizontal trajectories towards the 
left inside the coexistence area. In turn, the equalizing mechanism can 
be seen as vertical trajectories in the direction of the fitness equiva-
lence line inside the coexistence area. Note, however, that changes in 
niche overlap are likely to restrict changes (of both direction and mag-
nitude) in fitness ratio, and vice versa (Song et al., 2019).

3.2 | Priority effects

Importantly, the concepts of niche overlap and fitness ratio can be 
naturally extended to study priority effects (Ke & Letten, 2018). 
Indeed, the inequalities shown in Equation 3 can also be read as

Note that in the priority effects case, the niche overlap has to 
be larger than 1, that is, ρ > 1. Consequently, the definition of niche 
overlap (and the stabilizing mechanism) can be extended to priority 
effects, but its interpretation is the opposite as in the coexistence 
case, that is, ρ has to be as large as possible to accommodate a larger 
magnitude of fitness ratio leading to priority effects. Figure 2a shows 
the fitness ratio–niche overlap space for priority effects. Note that 
the interpretation of the equalizing mechanism remains the same as 
in the coexistence case, that is, the mechanism centres the fitness 
ratio within the range given by the niche overlap (Ke & Letten, 2018).

4  | STRUC TUR AL APPROACH

Different from MCT, SA follows the classic formulation of the LV 
model and focuses on the region of intrinsic growth rates com-
patible with species coexistence as a function of competition 
strengths (a.k.a. absolute reductions in per capita growth rate; 
Saavedra, Rohr, et al., 2017). That is, SA studies to what extent 
the intrinsic growth rates (ri) can change given the competition 
strengths (αij) that are usually considered as being fixed (but see 
Cenci, Montero-Castaño, & Saavedra, 2018; Saavedra, Cenci, Val, 
Boege, & Rohr, 2017 for the application of SA to changing compe-
tition strengths). Following this approach, the region of the ratio 

of intrinsic growth rates (r2/r1) compatible with species coexist-
ence and priority effects of two species is analytically described 
by Equations 2 and 3 respectively. This region, known as the fea-
sibility domain, can be geometrically represented as a unit cone 
(Figure 2b,c), and can be quantified by the normalized solid angle 
Ω of such cone (Song, Rohr, et al., 2018):

We define Q1 = α21/α11 and Q2 = α12/α22, which represent the ex-
tent to which a species depresses the competitor's per capita growth 
rate relative to its own self-regulation. As shown in Figure 2b,c, the 
formula to compute the feasibility domain (normalized solid angle) 
Ω is the same for both coexistence and priority effects—only the 
slopes are inverted (Appendix S3 for the mathematical derivation). 
The feasibility domain Ω ranges from 0° to 90°, where Ω = 90° cor-
responds to the ecological case where the coexistence of two spe-
cies is basically impossible and Ω = 90° corresponds to the case of 
non-competing species. Thus, the larger Ω, the larger the random 
changes to the ratio of intrinsic growth rates a community can tol-
erate without losing coexistence or priority effects.

5  | DISENTANGLING THE ROLES

To disentangle the roles of intrinsic growth rates and competition 
strengths in shaping coexistence and priority effects, we propose to 
combine the theoretical tools of MCT and SA. For this purpose, we 
can rewrite the coexistence criteria (Equation 2) for a two-species LV 
competition system as

Thus, the niche overlap is now given by !=
√
Q1Q2. Note that 

the fitness ratio (r2∕r1
√
Q2∕Q1) now explicitly expresses the intrinsic 

growth rates. Table 1 provides the summary of all model parame-
ters and their definition. Following this notation, the necessary and 
sufficient conditions for coexistence (Equation 2) can be rewritten 
as Q1 < r2/r1 < 1/Q2, and similarly, for priority effects (Equation 3) 
they read as Q1 > r2/r1 > 1/Q2. Consequently, the dynamical stabil-
ity condition for coexistence (i.e. the condition leading to the global 
stability of a feasible fixed point) is then given by Q1·Q2 < 1, while 
the dynamical instability condition for priority effects is given by 
Q1·Q2 > 1. Note that the exact case Q1·Q2 = 1 corresponds to the 
border between the stability and instability areas.

5.1 | Linking the stabilizing mechanism and SA

Under MCT, the stabilizing mechanism monotonically increases 
the range of the fitness ratio compatible with species coexistence 

(6)!>

√
"11"12

"22"21

>
1

!
.

(7)Ω=arccos
Q1+Q2√

1+Q2
1

√
1+Q2

2

.

(8)!<
r2
r1

√
Q2

Q1

<
1

!
.
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(Figure 2a). In other words, the stabilizing mechanism leads to the 
increase in relative reductions in per capita growth rate compat-
ible with coexistence. It has the opposite effect on priority effects 

(Figure 2a). However, it is not immediately clear how the stabiliz-
ing mechanism affects the tolerance to perturbations in intrinsic 
growth rates. To link the stabilizing mechanism and SA, we need 
to ask the two following questions: How does the niche overlap 
(ρ) relate to the feasibility domain (Ω) when both the fitness ratio 
(r2∕r1

√
Q2∕Q1) and ratio of intrinsic growth rates (r2/r1) are fixed? 

How does the ratio of intrinsic growth rates (r2/r1) affect the fea-
sibility domain (Ω) under the stabilizing mechanism? Note that the 
ratio r2/r1 corresponds to the initial location of a two-species system 
within the parameter space of intrinsic growth rates. Additionally, 
recall that the feasibility domain is derived from SA and corresponds 
to the range of intrinsic growth rates compatible with coexistence 
or priority effects.

The mathematical link between the stabilizing mechanism of 
MCT and the angle of SA is provided in Appendix S4. In brief, 
their combination reveals that the stabilizing mechanism always 
increases the range of intrinsic growth rates compatible with co-
existence (Figure 3). As expected, it has the opposite effect on 
priority effects (Figure 3). However, the magnitude of these ef-
fects depends on the given ratio of intrinsic growth rates (assum-
ing it remains fixed). Specifically, the smaller the niche overlap (ρ), 
the larger the feasibility domain (Ω) of species coexistence (and 
the opposite behaviour for priority effects). Yet, the difference 
in the effect between a small and a large niche overlap (ρ) moves 
from linear to nonlinear the larger the ratio of intrinsic growth 
rates (Figure 3). That is, the effect of the stabilizing mechanism 
on the feasibility domain (Ω) decreases as the ratio of intrinsic 
growth rates deviates from 1. Moreover, all these effects are 
stronger under coexistence than under priority effects (Figure 3). 

TA B L E  1   Summary of model parameters. The table presents a 
summary of the main parameters and quantities used across the text

 Definition

Properties

Feasibility The existence of an equilibrium point 
at which all species have a positive 
abundance

Global stability The capacity to converge to a unique 
equilibrium point regardless of the initial 
abundances

Model parameters

ri Intrinsic growth rate

αij Absolute reduction in per capita growth 
rate (competition strength)

!ij=!ij∕ri Relative reduction in per capita growth 
rate (relative competition strength)

Ki = ri/αii Carrying capacity

Qi = αji/αii Reduction in per capita growth rate 
relative to self-regulation

Important quantities

r2/r1 Ratio of intrinsic growth rates

!=
√
Q1Q2

Niche overlap
√

!11!12

!22!21
=

r2

r1

√
Q2

Q1

Fitness ratio

Ω Feasibility domain (normalized solid angle)

F I G U R E  3   Effect of stabilizing mechanism on coexistence and priority effects under perturbations in intrinsic growth rates. Each line 
corresponds to a different ratio of intrinsic growth rates (r2/r1) at fixed fitness ratio (r2∕r1

√
Q2∕Q1). Following each line, we can see that the 

stabilizing mechanism has a nonlinear positive effect on the feasibility domain Ω for coexistence. The opposite pattern for priority effects. The 
magnitude of Ω decreases for both coexistence and priority effects the more the ratio of intrinsic growth rates deviates from 1. These effects 
are stronger under coexistence than under priority effects. For illustration purposes, we use a fitness ratio of 2. Note that all the qualitative 
results presented here hold for any combination of parameters (Appendix S4). The grey line represents the stability–instability border
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This difference is explained by the fact that the stabilizing mech-
anism operates within a niche overlap between 0 and 1 for co-
existence, and within a niche overlap larger than 1 for priority 
effects. These statements are true for any fitness ratio and given 
ratio of intrinsic growth rates (Appendix S4). In sum, while explic-
itly ignored in previous applications of MCT, the ratio of intrinsic 
growth rates is an important mediator of the extent to which the 
stabilizing mechanism affects coexistence and priority effects.

5.2 | Linking the equalizing mechanism and SA

Under MCT, the equalizing mechanism centres the fitness ratio 
within a given range of niche overlap for both coexistence and 
priority effects (Figure 2a). Note that this is different from the 
stabilizing mechanism, whose effects on coexistence and prior-
ity effects are the opposite. To link the equalizing mechanism 
and SA, we need to ask the two following questions: (a) How 
does the fitness ratio (r2∕r1

√
Q2∕Q1) need to vary to increase the 

feasibility domain (Ω) when both the niche overlap (ρ) and ratio 
of intrinsic growth rates (r2/r1) are fixed? (b) How does the ratio 
of intrinsic growth rates (r2/r1) affect Ω under the equalizing 
mechanism?

The mathematical link between the equalizing mechanism of 
MCT and the angle of SA is provided in Appendix S4. In brief, the 

equalizing mechanism has a non-monotonic effect on the range 
of intrinsic growth rates compatible with coexistence and priority 
effects (Figure 4). Specifically, the size of the feasibility domain 
(Ω) reaches its maximum when the fitness ratio is equal to r2/r1 
(see horizontal black line in Figure 4), but decreases as the fit-
ness ratio deviates from r2/r1 (see curves in Figure 4). Recall that 
under MCT, the equalizing mechanism maximizes the conditions 
compatible with coexistence and priority effects when the fitness 
ratio is equal to 1 (regardless of the value of r2/r1), which is known 
as fitness equivalence (see vertical red line in Figure 4). Thus, as 
long as r2/r1 ≠ 1, the equalizing mechanism has a non-monotonic 
effect on the feasibility domain (Ω) under coexistence and prior-
ity effects. Moreover, the figure shows that the range of fitness 
ratio compatible with feasible systems (i.e. Ω > 0) decreases the 
larger the ratio of intrinsic growth rates (r2/r1), revealing a key tol-
erance trade-off (Appendix S4). Specifically, increasing the toler-
ance to perturbations in intrinsic growth rates (moving towards 
increasing Ω) cannot be achieved at the same time as increasing 
the tolerance to perturbations in competition strengths (moving 
towards fitness equivalence, viz. equalizing mechanism). This 
implies that systems may be close to either fitness equivalence 
(fitness ratio = 1) or a large Ω (fitness ratio = ratio of intrinsic 
growth rates), but not both. This supports recent work (Song et 
al., 2019) showing that the equalizing and stabilizing mechanisms 
are strongly interconnected.

F I G U R E  4   Effect of equalizing mechanisms on coexistence and priority effects under perturbations in intrinsic growth rates. Focusing on 
the tolerance to perturbations in competition strengths αij, it increases following the equalizing mechanism (white arrows), and it is maximized 
at the fitness equivalence line (red line; see Figure 2 for illustration). Then, focusing on the tolerance to perturbations in intrinsic growth rates 
ri, it increases following the black arrows, and it is maximized at the one-to-one relationship between fitness ratio and the ratio of intrinsic 
growth rates (black line). The colours represent the normalized angles Ω of each pair of plant competitors, and the increase in the tolerance 
to perturbations in intrinsic growth rates can be visualized by the colour gradient. Because the white arrows and the black arrows are 
generally different, a key trade-off emerges between increasing the tolerance to perturbations in intrinsic growth rates ri and competition 
strengths αij. For illustration purposes, we use ρ = 0.1 in (a), and ρ = 10 in (b). Note that all the qualitative results presented here hold for any 
combination of parameters (Appendix S4)
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The results above can also be explained intuitively. It is known 
that the equalizing mechanism counterbalances the ratio of in-
trinsic growth rates (r2/r1) via the ratio of competition strength 
(
√
Q2∕Q1). However, under changes in intrinsic growth rates, it is 

necessary to minimize the niche overlap (!=
√
Q2Q1) to increase 

the likelihood of persistence. Only in the case where r2/r1 = 1, 
both the ratio of competition strength (

√
Q2∕Q1) and niche over-

lap (ρ) can increase to achieve coexistence (Figure 4). In all the 
other cases, what it takes to equalize fitness is different from 
what it takes to find competition strengths that will allow for 
the greatest range of intrinsic growth rates compatible with co-
existence (or priority effects). Hence, the equalizing mechanism 
imposes a trade-off between the tolerance to perturbations in 
competition strengths and intrinsic growth rates. Importantly, the 
magnitude of the trade-off completely depends on the given ratio 
of intrinsic growth rates (assuming it remains fixed) for both coex-
istence and priority effects (Figure 4). Note that regardless of the 
size of the feasibility domain, the starting ratio of intrinsic growth 
rates determines the amount of random perturbations that can 
be tolerated. That is, a ratio of intrinsic growth rates in the middle 
of the feasibility domain can be perturbed in any direction in a 
magnitude up to half the size of the feasibility domain. Instead, 
a ratio of intrinsic growth rates close to the border of the feasi-
bility domain can only be perturbed in the opposite direction of 
that border (see Appendix S5 for illustrative examples). Hence, 
under arbitrary perturbations, the location of the ratio of intrinsic 
growth rates shapes the trade-off between tolerance to pertur-
bations in intrinsic growth rates and perturbations in competition 
strengths.

6  | APPLIC ATION TO EMPIRIC AL DATA

To illustrate how the combination of MCT and SA can allow us to 
disentangle the effect of perturbations in intrinsic growth rates 
and competition strengths on coexistence and priority effects, 
we applied our methods to a dataset of a field system of annual 
plant competitors occurring on serpentine soils in California, USA 
(Godoy & Levine, 2014; Kraft et al., 2015). Specifically, the sys-
tem consisted on the pairwise competition of all possible combi-
nations from 18 annual plant species in experimental gardens by 
establishing a density gradient of each competitor, and sowing all 
competitors as focal individuals into that density gradient. The 
relationships between the fecundity of the focal individuals and 
the density of a surrounding competitor were fitted to estimate 
intrinsic growth rates ri of individual species and pairwise inter-
action strengths α ij (Godoy & Levine, 2014; Saavedra, Rohr, et al., 
2017). A brief summary of the fitting methods and translation to 
LV parameters is shown in Appendix S6.

We tested two hypothesis derived from our combination of MCT 
and SA. First, we expected that the effect of niche overlap (ρ) on 
the range of intrinsic growth rates (Ω) compatible with coexistence 
should be larger than the range compatible with priority effects 

(per Figure 3). Second, if the tolerance to perturbations in intrinsic 
growth rates is maximized, then we should expect to see their fit-
ness ratio 

(
r2
r1

√
Q2

Q1

)
 equal to their ratio of intrinsic growth rates 

(
r2
r1

)
. 

Instead, if the tolerance to perturbations in competition strengths is 
maximized, then we should expect to see their fitness ratio 

(
r2
r1

√
Q2

Q1

)
 

equal to one (per Figure 4).
Figure 5 corroborates our hypotheses. Focusing on our first hy-

pothesis, we found that the feasibility domain Ω is typically larger 
under coexistence than under priority effects (Figure 5a). Under 
coexistence, Ω increases as the niche overlap decreases, whereas 
under priority effects we found the opposite pattern. Yet, as ex-
pected, the magnitude of such changes was stronger under coexis-
tence than under priority effects. Shifting our focus to our second 
hypothesis, we found that under both coexistence and priority 
effects, the tolerance to perturbations in intrinsic growth rates is 
maximized in the studied empirical systems. Figure 5b,c show that 
in the majority of the systems, for both coexistence and priority ef-
fects, the fitness ratio is close to the ratio of intrinsic growth rates 
(which corresponds to the 45° line). This observation is statistically 
confirmed with hypothesis testing (Wilcoxon signed-rank test, 
p < 10–4; Appendix S7). Moreover, in line with our expectations, we 
observed that the closer the empirical systems are to the one-to-
one relationship, the larger the value of Ω they display. Note that 
these observations are not circulus in probando because it is unclear 
a priori whether the tolerance to perturbations in intrinsic growth 
rates or in competition strengths would be maximized in these sys-
tems. Overall, these results reveal that it is possible to disentangle 
the effect of external perturbations on empirical systems.

7  | DISCUSSION

Here we have combined the frameworks of MCT and SA to dis-
entangle the effects of perturbations in intrinsic growth rates 
and competition strengths (absolute reductions in per capita 
growth rate) on coexistence and priority effects. Under this par-
ticular combination of theoretical tools, we have confirmed that 
the stabilizing mechanism of MCT increases the range of intrinsic 
growth rates compatible with coexistence, whereas it decreases 
the range for priority effects. These effects on intrinsic growth 
rates are stronger under coexistence than under priority effects. 
Importantly, we have demonstrated that the equalizing mecha-
nism of MCT has a non-monotonic effect on the range of intrinsic 
growth rates leading to coexistence (or priority effects), and there-
fore can be used to disentangle the roles of intrinsic growth rates 
and competition strength. However, the magnitude of all these ef-
fects is completely dependent on the given ratio of intrinsic growth 
rates, introducing a key trade-off between increasing the range of 
intrinsic growth rates and competition strengths compatible with 
coexistence or priority effects. That is, the tolerance to different 
types of perturbations is not maximized at the same time.

Leveraging on the tolerance trade-off found in competing spe-
cies, the studied empirical data have revealed that the tolerance 
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F I G U R E  5   Disentangling the role of intrinsic growth rates and competition strengths in annual plant assemblages. The panels illustrate 
the disentangled contribution of intrinsic growth rates and competition strengths to coexistence and priority effects using parameters 
estimated from experimental data in annual plant systems (Godoy & Levine, 2014; Kraft et al., 2015). (a) The stabilizing mechanism (niche 
overlap, ρ) has a stronger effect on Ω under coexistence than under priority effects. The size of the points corresponds to the ratio of 
intrinsic growth rates (r2/r1) for each pair of plant competitors. (b, c) The equalizing mechanism (fitness ratio, r2∕r1

√
Q2∕Q1) exhibits a 

key trade-off between maximizing tolerance to perturbations in intrinsic growth rates ri (moving towards increasing Ω) and competition 
strengths (moving towards fitness equivalence). The black line is the one-to-one relationship between fitness ratio and the ratio of 
intrinsic growth rates, which theoretically maximizes Ω for a given level of niche overlap (Figure 4). The red line corresponds to the fitness 
equivalence, which in general maximizes the tolerance to changes in competition strengths. The sizes of the points are proportional to the 
normalized angles Ω of each pair of plant competitors

(a)

(b)
(c)
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to perturbations in intrinsic growth rates (not in competition 
strengths) appears to be maximized in annual plant communities. 
This result, of course, needs to be taken with caution as some of 
these experimental systems were not observed in the field. This, 
however, opens a very exciting opportunity to investigate whether 
the level of tolerance to perturbations in intrinsic growth rates or 
competition strengths changes between systems that have been 
coexisting for shorter or longer periods of time. As another ex-
ample, one can ask which conditions within the parameter space 
could allow systems to persist under different habitats, which is an 
important question in the face of global warming (Alexander, Diez, 
& Levine, 2015). Similarly, turning the same question upside down, 
changes in the contributions of different model parameters can 
be indicative of the direction of perturbations in an environment 
and the consequent response of species. Because MCT has been 
widely used for two-competing species under a variety of eco-
systems and successional stages (Adler et al., 2013; Bimler et al., 
2018; Cardinaux et al., 2018; Chu et al., 2016; Kraft et al., 2015; 
Levine & HilleRisLambers, 2009; Mordecai et al., 2015; Narwani et 
al., 2013; Pérez-Ramos et al., 2019), our combined framework can 
be immediately applied to gain new insights about these questions 
on empirical systems.

It is also worth mentioning that the most fundamental limita-
tion of our study is that our results apply to two-competing spe-
cies only. This limitation is given by the canonical formalism of 
MCT (Barabás et al., 2018; Chesson, 2018; Song et al., 2019). That 
is, the two-species definitions of niche overlap and fitness ratio in 
MCT (Equation 5) cannot be generalized to an arbitrary number of 
competing species. Moreover, the current multispecies definitions 
in MCT are incompatible with the two-species definitions (Song et 
al., 2019). Thus, the dynamics of this two-species LV system are 
simple (necessary and sufficient conditions for coexistence and 
priority effects have been known for a long time) and special (e.g. 
dynamical stability is equivalent to invasibility; Goh, 1977). As a 
consequence, these dynamics do not capture many other compo-
nents of species coexistence, such as indirect effects (AlAdwani & 
Saavedra, 2019; Levine et al., 2017; Saavedra, Rohr, et al., 2017) 
and higher-order interactions (Grilli, Barabás, Michalska-Smith, & 
Allesina, 2017; Letten & Stouffer, 2019) in multispecies communi-
ties. However, we speculate that the tolerance trade-off between 
intrinsic growth rates and competition strengths may also be pres-
ent in larger communities.

Overall, our findings illustrate the importance of disentangling 
the effect of external perturbations on coexistence and priority ef-
fects, and calls for further theoretical and empirical investigation 
about potential tolerance trade-offs shaping different ecologi-
cal processes (Grainger et al., 2019). For example, Figure 4 shows 
that communities with the same niche overlap can exhibit exactly 
the same maximum Ω despite displaying different ratios of intrin-
sic growth rates (see also Appendix S4). Yet, communities charac-
terized by a large ratio of intrinsic growth rates can exhibit a very 
different range of conditions compatible with coexistence (and/or 
priority effects) from communities characterized by a small ratio 

(see Appendix S5 for details). Moreover, while we have illustrated 
the combination of MCT and SA assuming that the ratio of intrinsic 
growth rates remains fixed, future work can build on our framework 
to investigate the effect of relaxing this condition on coexistence 
and priority effects. Similarly, while the tolerance trade-offs that we 
have found indicate strong constraints between equalizing and sta-
bilizing mechanisms, the formalism followed in this study assumes 
that either niche overlap or fitness ratio can change while the other 
remains fixed. Yet, the potential interdependency between these 
two processes (Song et al., 2019) can make even more stringent the 
role of different model parameters in the formation of species inter-
actions and dynamics.
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A Equivalent parameterizations

It is worth noting that several mathematically equivalent parameterizations have been used
to describe the LV dynamics of 2-competing species (Case, 2000). Yet, regardless of model
parameterization, the conditions leading to coexistence or priority e�ects are equivalent under
the Structural Approach. For example, in addition to the r formalism (Eq. 1) and MCT for-
malism (Eq. 4), the LV model can also be expressed in terms of carrying capacities (Vander-
meer, 1975). In this other parameterization—what is known as the K-formalism, the carrying
capacities Ki are made explicit in the model as

Y
__]

__[

dN1
dt

= N1
r1
K1

(K1 ≠ N1 ≠ a12N2)

dN2
dt

= N2
r2
K2

(K2 ≠ a21N1 ≠ N2).
(S1)

Recall that the carrying capacity Ki of species i is computed as Ki = ri/–ii. It corresponds
to the abundance at equilibrium when the species grows in the absence of competition strength.
Note that the carrying capacity is well defined only if ri > 0, i.e., the species can grow in
monoculture (Gabriel et al., 2005). To be equivalent to Eq. (1), the competition strength
must be standardized by the intraspecific competition, i.e., aij = –ij/–ii. Note that aij is tra-
ditionally called the niche overlap of species j on species i (Case, 2000). In the K-formalism,
the condition for coexistence (Eq. 2) reads as

fl <
K2
K1

Ú
a12
a21

<
1
fl

, (S2)

and the condition for priority e�ects reads as

fl >
K2
K1

Ú
a12
a21

>
1
fl

. (S3)

These two sets of inequalities are very similar to those in the r-formalism (Eqs. 2 and 3).
Notice that ri is replaced by Ki and Qj by aij . Replacing the new parametrization into Eqn.
5, the niche overlap is given by fl = Ô

a12a21, which reveals that the niche overlap fl defined in
MCT is, in fact, the geometric average of the niche overlap aij of the two competing species.

Thus, the representation of the dynamical behavior of the LV model can be drawn in the
2-dimensional space made by the species fitness (Ÿi = ri/

Ô
–ii–ij), the carrying capacities

(Ki = ri/aii), or the intrinsic growth rates (ri) (Case 1999; Fig. S1). These representations
in the space of intrinsic growth rates are the core concept behind the structural approach
(Saavedra et al., 2017b). That is, Figure S1 shows that all these representations are conceptu-
ally equivalent to describe the range (as an algebraic cone) of intrinsic growth rates leading to
a given qualitative behavior (either coexistence or priority e�ects).

S1



A B C

D E F

Co
ex

ist
en

ce
Pr

io
rit

y 
eff

ec
ts

Species 1 fitness (κ1=r1/ α11 α12 )

S
pe
ci
es
2
fit
ne
ss

(κ
2=
r 2
/

α
22

α
21

)

Fitness space

Species 1 carrying capacity (K1=r1/α11)

S
pe
ci
es
2
ca
rr
yi
ng
ca
pa
ci
ty

(K
2=
r 2
/α
22
)

Carrying capacity space

Species 1 intrinsic growth rate (r1)

S
pe
ci
es
2
in
tri
ns
ic
gr
ow
th
ra
te

(r
2)

Intinsic growth rate space

Species 1 fitness (κ1=r1/ α11 α12 )

S
pe
ci
es
2
fit
ne
ss

(κ
2=
r 2
/

α
22

α
21

)

Species 1 carrying capacity (K1=r1/α11)

S
pe
ci
es
2
ca
rr
yi
ng
ca
pa
ci
ty

(K
2=
r 2
/α
22
)

Species 1 intrinsic growth rate (r1)

S
pe
ci
es
2
in
tri
ns
ic
gr
ow
th
ra
te

(r
2)

Figure S1: Space of intrinsic growth rates for coexistence and priority e�ects. The dynam-
ics correspond to the Lotka-Volterra model (Eq. 1). These panels represent the range of
intrinsic growth rates—species fitness (panels A and D), carrying capacities (panels B and
E), and intrinsic growth rates (panels C and F)—leading to coexistence or priority e�ects.
Whether we can be in the presence of coexistence or priority e�ects is determined by the
stability-instability inequality, i.e., –22/–12 > –21/–11 for coexistence (panels A and C) or
–22/–12 < –21/–11 for priority e�ects (panels D and F). The slopes (–21/–11 in green and
–22/–12 in purple) of the two lines determining the coexistence (or priority e�ects) cone are
computed from the competition strengths. Actually, these four panels are a simple geometric
representation of the inequalities expressed in Eqs. (2) and (3). The red line represents the
fitness equivalence line, and in dashed, its extension to priority e�ects.
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B Importance of intrinsic growth rates

In the MCT formalism (Eq. 4), intrinsic growth rates do not play any explicit role in either
feasibility nor stability. However, this is a special property of 2-species ODEs guaranteed by
the Poincaré–Bendixson theorem (Strogatz, 2014). Yet, a well-known counter-example to the
fact that intrinsic growth rates do impact the dynamics in other dimensions is the discrete
logistic growth dynamics of a single species,

Nt+1 = rNt(1 ≠ Nt), (S4)

where increasing the intrinsic growth rate r would move the system from staying at a fixed
equilibrium to a chaotic dynamics. Moreover, it is rather easy to show counter-examples in
systems with more than 2 species. For example, consider the following 4-species competi-
tion ODEs with fixed interaction matrix (written following MCT formalism). The governing
population dynamics are (Vano et al., 2006)

dN
dt

= diag(r)diag(N)(1 ≠

Q

ccca

1 1.09 1.52 0
0 1 0.44 1.36

2.33 0 1 0.47
1.21 0.51 0.35 1

R

dddbN). (S5)

where N = (N1, N2, N3, N4) is the vector of species abundances.

Figure S2A shows that the system exhibits chaotic behavior with intrinsic growth rates r =
(1, 0.72, 1.52, 1.27), Figure S2B shows that the system exhibits a point attractor with intrinsic
growth rates r = (0.1, 5.72, 1.53, 1.27), and Figure S2C shows that the system exhibits species
extinction with intrinsic growth rates r = (0.4, 0.01, 0.1, 2). This illustrates the importance of
intrinsic growth rates in population dynamics even under the MCT formalism.
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Figure S2: Intrinsic growth rates impact population dynamics. All the simulations are gov-
erned by the same initial conditions and the same interaction matrix, but the intrinsic grow
rates. Panel A exhibits chaotic behavior, Panel B exhibits a point attractor, and Panel C
exhibits species extinction. The x axis is on the log ratio.
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C Structural Approach and priority e�ects

The Structural Approach (SA) has been defined as the structural stability of coexistence
under changes in intrinsic growth rates (Saavedra et al., 2017b). Here, we show how SA can
be naturally extended to priority e�ects.

Theorem S1. The structural stability of priority e�ects under changes in intrinsic growth

rates can be computed as � = arccos Q1+Q2Ô
1+Q2

1
Ô

1+Q2
2

Proof. Criteria for stable coexistence is

Q1 <
r2
r1

<
1

Q2
(S6)

and the criteria for priority e�ects is

1
Q2

<
r2
r1

< Q1 (S7)

Thus, the transition from stable coexistence to priority e�ects can be seen as

1
Q2

‘æ Q1 (S8)

Q1 ‘æ 1
Q2

(S9)

With the triangulate equality that

tan – ≠ tan —

1 + tan – tan —
= 1/ tan — ≠ 1/ tan –

1 + 1/(tan – tan —) (S10)

This shows that the normalized solid angle � remains the same after the transition. With
elementary trigonometric transformation, we have the result shown in Fig. S3.
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Figure S3: Cartoon of the proof. The figure shows how the transformation alters the rela-
tive position of the structural stability region but keeps the size fixed. Panel A represents
coexistence, while Panel B represents priority e�ects.
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D Formal combination of MCT and SA

To simplify the derivation of the combination of MCT and SA, let us denote the fitness ratio
r2
r1

Ò
Q2
Q1

as „ and the ratio of intrinsic growth rates r2
r1

as µ.

D.1 Stabilizing mechanism and SA

Let us fix the fitness ratio „ as a positive constant. Then Q2 = „
2
µ

≠2
Q1, and the niche

overlap can be written as
fl =


Q1Q2 = „µ

≠1
Q1, (S11)

which implies that

cos � = fl(„≠2
µ

2 + 1)


1 + „≠2µ2fl2


fl2 + „≠2u2 . (S12)

Looking at the conditions in fl that increase � (the region of coexistence or priority e�ects)
we have

ˆ cos �
ˆfl

= „
≠2

µ
2!

1 ≠ fl
4"!

„
≠2

µ
2 + 1

"

(„≠2µ2 + fl2)3/2(„≠2µ2fl2 + 1)3/2 , which is
I

> 0, if fl < 1
< 0, if fl > 1,

. (S13)

which implies that � decreases as niche overlap fl increases under coexistence (fl < 1), and �
increases as niche overlap fl increases under priority e�ects (fl > 1.). Similarly, looking at the
conditions in µ that increase � we have

ˆ cos �
ˆµ

= „
≠2

µfl
!
fl

2 ≠ 1
"2!

„
≠2

µ
2 ≠ 1

"

(„≠2µ2 + fl2)3/2(„≠2µ2fl2 + 1)3/2 , which is
I

> 0, if Q1 > Q2
< 0, if Q1 < Q2,

. (S14)

Thus, when „
≠2

µ
2

> 1 (i.e., Q1 > Q2), � would increase if µ = r2
r1

decreases; and when
„

≠2
µ

2
< 1 (i.e., Q1 < Q2), � would increase if µ = r2

r1
increases. This pattern is the same

regardless of whether looking at coexistence or priority e�ects.

D.2 Equalizing mechanism and SA

Let us fix the niche overlap fl as a positive constant. Without loss of generality, we assume
that fitness ratio „ Ø 1. Then Q1 = flµ„

≠1
, Q2 = flµ

≠1
„. Unlike the stabilizing mechanism,

the equalizing mechanism is not always well-defined as feasibility is not always satisfied —
µ has to lie within the feasibility domain spanned by (Q1, 1) and (1, Q2). Hence, we define
� := 0 when feasibility is violated. Focusing on priority e�ects we have

cos � = fl(µ2 + „
2)


„2 + fl2µ2


µ2 + fl2„2 , where fl

≠1
µ

2
< „ < flµ

2 (S15)

Note that the condition fl
≠1

µ
2

< „ < flµ
2 is equivalent to the feasibility condition 1

Q1
< µ <

Q2. Similarly, for coexistence we have

cos � = fl(µ2 + „
2)


„2 + fl2µ2


µ2 + fl2„2 , where flµ

2
< „ < fl

≠1
µ

2 (S16)

Focusing only on non-trivial � (i.e., cos � ”= 1), the derivative of cos � is

ˆ cos �
ˆ„

= µ
2
fl

!
fl

2 ≠ 1
"2

„
!
„

2 ≠ µ
2"

(µ2fl2 + „2)3/2(µ2 + fl2„2)3/2 , (S17)
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which impels that � decreases when „ > µ and increases otherwise in both coexistence and
priority e�ects.

Furthermore, when � are fixed, then

„
2 =

µ
2 csc2(�)

3
2
!
fl

4 + 1
"

cos2(�) ≠ 4fl
2 +

Ô
2
!
fl

2 ≠ 1
"

cos(�)
Ò

fl4 + (fl2 + 1)2 cos(2�) ≠ 6fl2 + 1
4

4fl2 .

(S18)
The conditions above imply that Q1 and Q2 do not depend on µ. Note that in the extreme
case when � reaches its maximum (i.e., „ = µ, or, equivalently, Q1 = Q2), the maximum of �
is arccos

1
2fl

fl2+1

2
, which only depends on the niche overlap fl.
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E Ratios of intrinsic growth rates and maximum solid angle

Figure 4 shows that di�erent ratios of intrinsic growth rates r2/r1 can yield the same maxi-
mum solid angle �. While di�erent ratios of intrinsic growth rates r2/r1 would have the same
aggregated tolerance to random perturbations (i.e. �), they have di�erent tolerances to direc-
tional perturbations. Figure S4 shows the three ratios r2/r1 = 1, 2, 10 with their associated
maximum �. When r2/r1 = 1, the tolerances to directional perturbations (i.e. distances
to the boundaries) are similar. However, when r2/r1 increases, the tolerances to directional
perturbations shows a stronger trade-o�.
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Figure S4: Di�erent tolerances to directional perturbations with the same �. The two axes
denote the intrinsic growth rates of two species. The blue region denotes the feasibility do-
main. The black line denotes the ratio of intrinsic growth rates (values in upper-right). As
the ratio of intrinsic growth rates deviates more from 1, the system is more robust to pertur-
bation upon one boundary and less robust to perturbation upon the other boundary.
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F Annual plant model

This section discusses how to apply MCT and SA on an the annual plant model (Godoy &
Levine, 2014). A more detailed disucssion can be found in Godoy & Levine (2014); Godoy
et al. (2014); Saavedra et al. (2017b). The annual plant model reads as

dNi,t+1
dt

= (1 ≠ gi)siNi,t + gi⁄iNi,t

1 +
qn

j=1 –̃ijgjNj,t
, (S19)

where gi is the germination rate, si is the seed survival probability, ⁄i is the fecundity rate,
and –̃ij is the competition strength (relative reduction in per capita growth rate). After alge-
braic manipulation, the equilibrium N

ú
i can be expressed as a linear equation:

gi⁄

1 ≠ (1 ≠ gi)si
≠ 1 =

nÿ

j=1
–̃ijgjN

ú
j . (S20)

Then, Eq. 1 can be achieved via re-parametrization

ri := gi⁄

1 ≠ (1 ≠ gi)si
≠ 1 (S21)

–ij := –̃ijgj (S22)
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G Hypothesis testing for field data

Here we performed a hypothesis testing to show that there is a significant statistical tendency
to increase the feasibility domain � rather than increasing the fitness equivalence in the field
data (Figure 5B-C). Recall that the maximization of the former implies higher pressures
in intrinsic growth rates, while the maximization of the latter implies higher pressures in
competition strengths. Specifically, we established two hypotheses:

H0 : the tolerance to perturbation in competition strength is maximized (S23)
H1 : the tolerance to perturbation in intrinsic growth rates is maximized (S24)

(S25)

To formalize this problem, it is equivalent to ask whether points in Figure 5B-C are closer
to the fitness equivalence line or to the maximizing � line. Let us denote the distance to
the fitness equivalence line as d1 and the distance to the maximizing � line as d2. Then, the
hypotheses are equivalent to

H0 : d2/d1 < 1 (S26)
H1 : d2/d1 > 1 (S27)

Figure S5 shows the distribution of the log ratios of distances d2/d1 in the empirical data
set. Then, we ran Wilcoxon signed-rank test on the two hypotheses. For coexistence, we
found that H0 has a p value of 1 and H1 has a p value of 3.049 ◊ 10≠7. Similalry, for priority
e�ects, we found that H0 has a p value of 1, and H0 has a p of value 0.0001009. Therefore, we
rejected the null hypothesis, and concluded there is a tendency to maximize the tolerance to
perturbations in intrinsic growth rates.

Towards fitness equivalence Towards increasing Ω
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Figure S5: This figure shows the distribution of the ratio of distances d2/d1 for coexistence
(in blue) and priority e�ects (in orange) in the annual plants assemblages. The dotted red line
denotes the equal distance d1 = d2. The ratio of distances is plotted on log ratios.
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