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Abstract

The consensus that complexity begets stability in ecosystems was challenged in the seven-

ties, a result recently extended to ecologically-inspired networks. The approaches assume

the existence of a feasible equilibrium, i.e. with positive abundances. However, this key

assumption has not been tested. We provide analytical results complemented by simulations

which show that equilibrium feasibility vanishes in species rich systems. This result leaves

us in the uncomfortable situation in which the existence of a feasible equilibrium assumed in

local stability criteria is far from granted. We extend our analyses by changing interaction

structure and intensity, and find that feasibility and stability is warranted irrespective of spe-

cies richness with weak interactions. Interestingly, we find that the dynamical behaviour of

ecologically inspired architectures is very different and richer than that of unstructured sys-

tems. Our results suggest that a general understanding of ecosystem dynamics requires

focusing on the interplay between interaction strength and network architecture.

Author summary

Finding conditions leading to stable equilibria, i.e. equilibria robust to small perturbations,
is a key feature in understanding how persistent are ecological systems. The number of
species involved in the ecosystem as well as the number of relations between them has
historically been pointed out to be the prominent ingredients determining stability. The
latter is however always computed for a particular equilibrium, which needs and is usually
assumed to contain only positive abundances. This assumption has until now only barely
been tested in relation to system size. We provide here analytical results complemented by
numerical simulations which show that it is almost impossible to find equilibria containing
only positive abundances in species rich systems or, if so, the parameters are constrained
to lead to ecologically-nonsensical abundances in unstructured systems. Interestingly, only
ecologically-inspired architectures permit one to obtain feasible equilibria with a rich and
sensible dynamical behavior.
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Introduction

A central question in ecology is to understand the factors and conditions that ensure ecological
systems to persist, a requisite for the sustained provisioning of vital ecosystem services. This
question of a “balance of nature” has a long history in science [1, 2], and the consensus that
“complexity begets stability” emerged among ecologists in the fifties. MacArthur [3] had a rad-
ical view on this question, arguing that stability will increase with the two fundamental ingre-
dients of complexity, the number of species and of interactions. The argument for this claim
was borrowed from Odum [4]: stability increases with the number of paths through which
energy can flow up in a food web. Later, Elton [5] provided a suite of arguments for this posi-
tive relationship. The first one is the following: mathematical systems composed of one preda-
tor and one prey exhibit conspicuous fluctuations. Implicit in this argument is that more
complex systems should be more stable, which remained untested at that time. In the seventies,
Levins [6, 7], Ashby and Gardner [8], and May [9] showed numerically that large random sys-
tems may be expected to be stable up to a certain connectance threshold, contradicting the ear-
lier ideas that complex natural systems are more likely to be stable. In his impactful work, May
[10, 11] showed mathematically using random matrix theory [12, 13] that large and random
ecosystems are inherently unstable. His approach was based on a mathematical study of com-
munity matrices, which represented unstructured random networks of interacting species.
He used a local-stability analysis assuming these systems were at equilibrium. He derived a
simple and elegant criterion for system stability, which is a milestone in the stability-complex-
ity debate [14]. May [11] concluded that there was no comfortable theorem assuring that
increased complexity will lead to stable systems, and that the task was therefore to “elucidate
the devious strategies which make for the stability in enduring natural systems”.

Recently, the work of May was revisited by Allesina and collaborators [15, 16]. They estab-
lished stability criteria for systems where species interact specifically via either competition,
mutualism, or predation. As such, their contribution is a refinement of May’s approach that
considered mixtures of interaction types. The general conclusion is that, in species-rich com-
munities, interactions should be moderate to ensure the stability of the equilibrium. They also
performed simulations to study stability in randomly generated systems whose architecture
mimics empirically observed food webs [17, 18]. They arrived at the counter-intuitive conclu-
sion that such ecologically-inspired structured graphs are less stable than unstructured ones.
They also focused on interaction weights, and interestingly found that weak interactions
should increase the stability for mutualistic and competitive webs, but decrease the stability of
food webs (see also [19], where more precise statements are obtained for interactions weights
of different intensity and symmetry). It was also found that more realistic structures seem to
be detrimental for stability, and that the structure alone plays a minor role for stability com-
pared to interaction weights [20, 21].

All the above approaches are local-stability analyses, where systems are linearised at the
equilibrium point and stability is evaluated only in the close vicinity of this point. In ecological
systems, this point is meaningful only if the equilibrium-abundances are all strictly positive; in
other words, if the equilibrium is feasible. Fig 1 illustrates the fact that a stable equilibrium of a
simple two-level food web can be feasible when the absolute value of the interspecific competi-
tion coefficient is small, but infeasible when it becomes too large. Hence, a stable and feasible
equilibrium can be transformed into an infeasible stable equilibrium by changing competition
coefficients. In these previous works, equilibria were simply assumed feasible, without further
analysis; basically, the true Jacobian, evaluated at the equilibrium, was replaced by a random
matrix. Interestingly, soon after the work of May [11], Roberts [22] noted that May’s approach
indeed remained silent concerning the feasibility of the equilibria. In a simulation study, he
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found that, in feasible systems, stability increased with the number of species. However, Rob-
erts did not explore the very question of the relationship between system size and feasibility
probability. This is a key issue since feasibility is a prerequisite to local-stability analysis. In
the particular case of competitive systems, this question had to await the work of Logofet [23]
who found that “equilibriumness” was vanishing with species richness. Note that already in
1970, Vandermeer [24] studied a question very related to feasibility, the expected number of
species that can coexist in competitive communities. The same question has been treated by
Rossberg [25], where the coefficient of variation of species abundance is studied in a mean-
field approach. Since then, few contributions have explored the question of feasibility, and if
so in particular systems and with regard to the characteristics of the interactions rather than
to species number (e.g., for asymmetric competition [26, 27] or for mutualism [28]). Very
recently the question of feasibility reappeared with the aim of providing general criteria lead-
ing to feasible equilibria [29], following an analogue approach as in ref. [28]. The idea of this
important work is to compute the fraction of demographic parameters leading to feasibility
under given conditions. Very interestingly, from the perspective of system complexity whose
effect on stability has been thoroughly investigated in previous works [4, 6, 8, 9, 15], keeping
this fraction well-defined (different from zero and infinity) when the number of species
increases requires that the absolute mean interaction strength is small enough [29, Fig 2].

Here, we present an extensive study of the fundamental question of equilibrium feasibility,
and expose its underlying mathematical principles in order to investigate how complexity
influences feasibility probability. Two classes of networks are studied: 1) networks which do
not possess any particular topological structure, for which we consider random, mutualistic,
competitive, and predator-prey interactions, and 2) predator-prey networks designed to cap-
ture food web architecture, following the cascade [17], niche [18] and nested-hierarchy [30]
models. We show that, in situations compatible with the above works [10, 15, 16], the existence
of a feasible equilibrium is not guaranteed, since the probability to observe such a point
decreases exponentially towards zero as the size of the network grows. Interestingly, we find
that with weak interactions, non-trivial feasible equilibria are found only in ecologically-
inspired systems, in a way that is ecologically sensible.

Models

We adopt the following strategy: for models of interacting species, we use the demographic
parameters most favourable to feasibility, and randomise the interactions to estimate the prob-
ability to find equilibria with only positive abundances. This is achieved for different species

Fig 1. Feasibility and stability for a two-level food web. (a) The network is composed of two producers and of one
consumer. (b) The time evolution of the species abundances is described by a Lotka-Volterra dynamic. The parameters
defining the dynamical system are the interspecific competition coefficient a< 0 and the intraspecific competition
coefficient θ< 0. The producers’ growth rates are set to 1, while the consumer growth rate is set to −1. (c) Abundances at
equilibrium as a function of |a| with θ = −1. The system possesses a unique stable equilibrium which is feasible when |a| is
smaller than a critical threshold. When |a| crosses this threshold, the stable equilibrium becomes infeasible.

https://doi.org/10.1371/journal.pcbi.1005988.g001
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richness, network architectures, and interaction intensities. Additionally, in cases where
the equilibrium is trivially feasible, we extend our analyses by investigating the effect of the
demographic parameters on feasibility. We provide analytical results for cases compatible with
May’s approach, and otherwise rely on simulations.

We consider a classical Lotka-Volterra model [31] for large, complex ecological networks
with S species. Mathematically, in this setting, the vector of abundances x solves the following
system of differential equations

dxi

dt
à xi ri á yxi á

1

ÖCSÜd
XS

jà1

aij xj

 !

; for all 1  i  S:

The per capita effect of species j on species i is encapsulated in a coefficient aij, ri denotes the
intrinsic growth rates of species i, θ is a coefficient reflecting intraspecific competition, C is the
connectance and δ a normalisation parameter (see below). In matrix notation, it becomes

_x à x � Ör á ÖyI á ÖCSÜ�dAÜxÜ

with I the S × S identity matrix, and where � denotes the product defined by x � y = (x1y1,. . .,
xSyS).

Web topologies

We will first focus on webs whose topologies are based on Erdös-Renyi random graphs
(unstructured webs), where edges occur with probability C, the so-called connectance of the
graph. It is given by C = L/(S � (S − 1)) with L the total number of links in the network. Next,
we will consider graphs whose topologies are drawn randomly according to the cascade [17],

Fig 2. Illustration of some predator-prey networks and adjacency matrices. (a-b) Unstructured model for predation. (c-d) The cascade
model. (e-f) The niche model. The parameters are C = 0.25 and S = 30. Thicker green arrows represent larger interaction strengths. Only
positive interactions are represented.

https://doi.org/10.1371/journal.pcbi.1005988.g002
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the niche [18] and the nested-hierarchy food web models [30] (structured webs), that capture
more accurately trophic interactions of real food webs. Fig 2 provides illustrations of these var-
ious topologies.

Interaction sign

If species i and j interact; that is if the web contains an edge between these two species, the
nature of the interaction is encoded in the sign of the coefficients aij: aij < 0 and aji < 0 for
competition; aij > 0 and aji > 0 for mutualism; aij > 0 and aji < 0 for predation of i on j. The
interactions aij form the S × S interaction matrix A.

In order to exhibit the effects of network structure on the dynamics, the aijs are randomised
with fixed mean and standard deviation. Their magnitude plays a key role for the local stability
of networks [32, 33].

Interaction strength

We introduce a parameter 0 δ 1 ruling the average interaction strength. The aijs are
divided by the linkage density (a measure of complexity given by CS [10]) raised to the power
δ (see ref. [28, 34]). This normalisation is mathematically sensible since Wigner’s theory [12],
on which May’s and Allesina’s results are based, is built for the case δ = 1/2. Analytically, we
will show that three regimes emerge when S becomes large: strong (0 δ< 1/2), moderate
(δ = 1/2), and weak interactions (1/2 < δ 1), see Fig 3a. Intraspecific competition is included
as customarily [10, 11, 15] with a common coefficient θ< 0, separated from the interaction
matrix and unaffected by the normalisation constant.

Construction of the networks

The first type of networks (unstructured) are based on Erdös-Renyi graphs. For May’s random
model [10], an entry of the adjacency matrix α is set to one with probability C, zero otherwise.
For mutualistic, competitive and predator-prey interactions, a pair (i, j), i< j, is linked such
that αji = αij = 1 with probability C. The adjacency matrices for the second type of networks
(structured networks modeling predation) are built according to the cascade [17], niche [18]
and nested-hierarchy [30] models. Their adjacency matrix α indicates that i preys upon j when
αij = 1 and their connectance is set to C/2. Their detailed construction is reported in S1 Text.
See also Fig 2 for an illustration.

In May’s random model [10], interactions strengths are sampled from i.i.d. random vari-
ables, leading to mixture of interactions types, including also commensalism and amensalism.
Concerning models for mutualism (competition), aij and aji are independently randomly cho-
sen from a positive (negative) random variable. For predation models, any pair (i, j) such that
i< j is linked (i.e. αji = αij = 1 in the adjacency matrix) with probability C and the interactions
strengths are also independently sampled, with the restriction that sign(aij) = −sign(aji). For
the structured networks, the entries of α are multiplied with positive i.i.d. values and the
entries of αt, the transpose of α, with negative i.i.d. values. The interaction matrix A is the addi-
tion of the two. Gaussian or folded-Gaussian random variables with standard-deviation σ are
chosen in our simulations, but our analytical results are not limited to the particular choice of
these distributions, see S1 Text. Our simulations are performed by randomly sampling A and
then computing the equilibrium x⇤ according to Eq (1). This Monte-Carlo procedure is used
for the estimation of PS under the different scenarios.
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Fig 3. Stability and feasibility: Outline. (a) For a system to be feasible, interaction strength has to decrease with
complexity. The Y-axis represents an interaction-strength normalizing factor that defines three regimes depending on
the parameter δ: strong interactions (δ> 0.5), moderate interactions (δ = 0.5; blue line, with C = 0.4), and weak
interactions (0 δ< 0.5). (b, c, d) For the three regimes, the graphs show the eigenvalues of the Jacobian J(x⇤) for 100
realisations of May’s random model (S = 150, θ = −1, σ = 0.4). Eigenvalues with a real part larger than 0 are unstable;

Feasibility and stability of complex ecosystems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005988 February 8, 2018 6 / 18

https://doi.org/10.1371/journal.pcbi.1005988


Results

Existence of feasible equilibria

A system is feasible if all abundances at equilibrium are positive. If this equilibrium exists, the
vector x⇤ corresponds to a point for which the dynamics of the Lotka-Volterra system stops
varying, and is given by

x⇤ à �ÖyI á ÖCSÜ�dAÜ�1r : Ö1Ü

If the solution to this equation involves negative abundances, then the system is not feasible.
Since the interactions aij are random variables, it is natural to study PS, the probability to
observe a feasible equilibrium, which is given by

PS à PÖx⇤i > 0; for all species iÜ: Ö2Ü

This probability depends on θ, C, S, δ, A and r.
For a given δ, C, and type of network, we choose the growth rates vector r = (ri) most

favourable for feasibility, or, in case of trivially feasible equilibria, ri to be independent and
bounded random variables. The most favourable growth rates correspond to the deterministic
vector making the equilibrium to be, on average, as far as possible from the boundaries of the
feasibility domain. This deterministic vector is referred to as the mean structural vector. By
definition, the feasibility domain is the positive orthant of the phase space. We show in the S1
Text that this vector is related to a particular way of choosing intrinsic growth rates, which
have been used in ref [20] to avoid negative abundances.

It is now possible to compute PS with regard to the randomness of the aijs. Extending results
on large systems of random equations [35], we develop analytical formulas for PS for our first
class of unstructured models when S tends towards infinity, and use Monte Carlo simulations
to estimate PS for the second class of structured models (see S1 Text). Before exposing our
results, we briefly discuss the link between stability and feasibility.

Link between stability and feasibility in random models

It is only when A is such that x⇤ is feasible that the local-stability analysis of x⇤ is sensible. This
analysis involves the Jacobian matrix evaluated at x⇤ (the so-called community matrix),

JÖx⇤Ü à diagÖx⇤ÜÖyI á ÖCSÜ�dAÜ; Ö3Ü

which of course depends on the random vector x⇤ and on the random interactions matrix A.
The equilibrium x⇤ is linearly stable when the real parts of all eigenvalues of J(x⇤) are negative.
Under May’s approach, and similarly in ref. [15, 16, 19], J(x⇤) is replaced by the random matrix
~J à yI á ÖCSÜ�dA. All the information on x⇤ and on the inherent relations between x⇤ and A

eigenvalues of feasible systems are in blue. (b) With strong interactions, equilibria are never feasible nor stable. (c) With
moderate interactions, feasible equilibria are stable. (d) With weak interactions, all equilibria are feasible and May’s
stability criterion is trivially fulfilled. (e, f, g) Probability of feasibility for the three regimes: null under strong
interactions; decreasing under moderate interactions; null or one under weak interactions. (h) In the weak regime, the
probability of feasibility depends on the parameter values, for example the mean interaction strength (μA) and minimal
growth rates (Min(ri)). The panel shows the result of Theorem S.3.6 for θ = −1 and �r à 1. Blue region: parameters
values leading to feasible equilibria (in red, to unfeasible equilibria). Note the trade-off between μA and Min(ri). (i, j)
Under weak interactions, unstructured networks and the cascade model lead to deterministic abundances at
equilibrium (in our setting, prey, predator, and intermediate species reach equal abundances). Interestingly, in
structured networks (as the niche and the nested-hierarchy model), the abundances at equilibrium remain random,
with a support depending on the trophic position of the species in the web.

https://doi.org/10.1371/journal.pcbi.1005988.g003
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(see Eq (1)) are overlooked. The problematic point is that one obtains stability results by focus-

ing on the eigenvalues of ~J even when a feasible equilibrium x⇤ does not exist.
For example, May [10] considers that the elements of A are such that all diagonal entries are

set to 0, and that all off-diagonal random elements are independent and set to 0 with probabil-
ity 1 − C. A non-zero entry is sampled from any centred distribution with standard deviation

σ. Applying results from random matrix theory [13], the eigenvalues of ~J will then have nega-
tive real parts for large S when

s
ÖCSÜd

ÅÅÅÅÅÅ
CS
p

< jyj; Ö4Ü

which is May’s stability condition. We show in S1 Text, Proposition S.4.1, that May’s criterion
still holds for the matrix J(x⇤) under the additional assumption that x⇤ is feasible (see Fig 3b).
Thus it appears critical to study the feasibility of such systems.

Feasibility in unstructured random web models

Strong interactions. For 0 δ< 1/2, the probability of finding feasible equilibria PS goes
abruptly to zero. Indeed, the variance of the abundances at equilibrium of each species grows
with species richness. Then, the probability of having negative abundances converges to one,
consequently PS! 0, as illustrated in Fig 3c. Note also that this regime of interactions violates
May’s stability criterion when S increases.

Moderate interactions. Moderate interactions (δ = 1/2) correspond to the limiting case
for which May’s criterion can be asymptotically satisfied. Indeed, from Eq (4), May’s stability
criterion is now independent of S and C, and becomes σ< |θ|. However, we show that in this
case there exists asymptotically almost surely no feasible equilibria. Indeed, we prove that, for
independent and identically distributed (i.i.d.) intrinsic growth rates ri and when σ< |θ|, the
equilibrium abundances x⇤i are asymptotically i.i.d. Gaussian random variables

x⇤i ⇡ N Öm⇤; s2
⇤Ü for all i à 1; . . . ; S;

where the mean and the variance are given by

m⇤ à �
�r
y

and s2
⇤ à

s2
r

y2 á
r2s2

y2Öy2 � s2Ü
;

(see Proposition S.3.2. of S1 Text). In the above formula, �r , s2
r and r2 denote respectively

the mean, the variance and the second moment of the random intrinsic growth rate ri. When
σ⇡ |θ|, the system becomes structurally unstable (see [36]): the random matrix θI + (CS)−δ A
becomes singular and the linear system (1) is ill-conditioned, that is, the inverse of the random
matrix is dominated by large contributions associated with near zero eigenvalues.

By independence of the x⇤i , the probability of feasibility PS à PÖx⇤i > 0; for all species iÜ
reduces thus to PS à

QS
ià1 PÖx⇤i > 0Ü in the large S limit. Since every x⇤i is identically normally

distributed, PÖx⇤i > 0Ü < 1 for every 1 i S. Thus PS decreases following a power law when

the number of species S becomes large, i.e. PS! 0 as S!1 (Figs 3c and 4a. See Theorem
S.3.3. in S1 Text for complete details). More precisely, when the intrinsic growth rate is the
mean-structural vector, the probability that an equilibrium is feasible is approximated by

PS ⇡ F

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
y2 � s2

s2

s0

@

1

A
S

; Ö5Ü
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where F is the standard Gaussian cumulative distribution function. Two parameters influence
the decrease of PS; the intraspecific competition θ and the variance of the interactions σ2.
Larger θ will increase F (which becomes closer to one) and reduce the speed of decrease of PS.
Concerning the interactions, smaller variances permit a similar behavior, as illustrated in the
insert of Fig 4a. In this illustration, standard-deviations smaller than σ = 0.3 produce more
likely feasible equilibria in systems with finitely many species.

Concerning local stability within this framework, interestingly, we prove in Proposition
S.4.1 that any asymptotically feasible equilibrium is stable when σ< |θ|.

We also show numerically that similarly PS! 0 as S!1 for unstructured random models
for competitive, mutualistic, and prey-predator networks (see Table 1, Fig 4, and S1 Text).

Weak interactions. Consider now weak interactions among species (1/2< δ 1) in
unstructured random networks. When the growth rate vector is set to the mean-structural
vector, then PS! 1 (Fig 5b). Indeed, we prove in S1 Text that the steady state x⇤ converges
towards the feasible deterministic vector 1 which contains all 1s as values. In other words,
any x⇤i converges to 1 with a variance converging to 0 and is thus trivially positive. This implies

PS! 1.
We test now different growth rates. Considering a general model where μA denotes

the mean interaction strength between interacting species, we find that PS! 1 when
ri > �r mA=ÖmA á yÜ for all i and where �r is the sample mean of the intrinsic growth rates (see
Theorem S.3.6. of the S1 Text), otherwise, PS! 0 as illustrated in Fig 3d. For example, in
May’s framework (μA = 0), PS! 1 when all growth rates are positive. Similar results will be

Fig 4. Probability of feasibility for different models in the regime of moderate interaction strength. (a) Analytical prediction for
the random model. Insert: the scaled colors express PS as a function of both S and σ. (b-g) Predictions (with 95% confidence
intervals) from 1000 simulations for random mutualistic networks, random competitive networks, random predator-prey networks,
the cascade model [17], the niche model [18], and the nested-hierarchy model [30], respectively. We choose aij ⇠ N Ö0;sÜ for any

non-zero entry of the interaction matrix A in the random model; in the other cases, a strictly positive interaction is randomly drawn
from a folded normal distribution such that aij ⇠ jN Ö0;sÜj, and a strictly negative interaction is sampled such that aij ⇠ �jN Ö0;sÜj.
The parameters are C = 0.25, σ = 0.4, and θ = −1.

https://doi.org/10.1371/journal.pcbi.1005988.g004
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found in S1 Text concerning other types of unstructured models. These results rely on the
fact that, when the growth rate vector has bounded components, the variance of any x⇤i goes

towards zero. As such, x⇤ converges towards a deterministic vector that is feasible or not
depending on the chosen parameters values. Thus PS! 1 or 0, depending on ri, θ, and μA.

Overall, with weak interactions and for any choice of growth rates, all realisations of the
random matrix A lead to a limiting deterministic equilibrium. Thus, abundance variability dis-
appears irrespective of particular realisations of A.

When studying the three other types of unstructured models (mutualistic, competitive, and
predator-prey networks), we find the same results as above for strong, moderate or weak inter-
actions (Table 1).

Feasibility in predator-prey structured models

May’s paradox that complexity decreases stability in mathematical models led to the explora-
tion of the effects of topological structure on systems’ dynamics. Several works have shown
that particular architectures can stabilise ecological networks [37–40]. Nevertheless, the
feasibility of different network architectures for different interaction regimes has not been
explored.

Consider for example Cohen’s cascade model of trophic networks [17], where species are
hierarchically ordered so that they feed only on lower indexed species, generating sub-triangu-
lar matrices with random structure. For the three regimes of δ, simulations yield similar behav-
iour of PS as for unstructured models (Table 1).

We now test two other food web models that more accurately capture the structure of tro-
phic interactions in real systems, the niche [18] and the nested-hierarchy models [30]. The for-
mer generates purely interval food webs (predators consume all species in a niche interval)
while the latter is based on evolutionary processes and relaxes this constraint. The results are
qualitatively similar to the ones of unstructured random models for all types of interactions.
However, two interesting features emerge. First, the mean structural vector now contains neg-
ative growth rates, which is the essence of predator-prey systems where predators will die in
the absence of prey (this feature also appears in the cascade model, but not in the unstructured
food web model, see Table 2 in S1 Text). Second, with weak interactions, each x⇤i no longer

converges to a deterministic limiting vector, but instead to a non-trivial random variable hav-
ing a distribution of finite support and positive standard-deviation. Thus, contrary to the

Table 1. Summary of the different results presented on PS for S!1.

Model Moderate interactions Weak interactions

(d à 1
2
) (1

2
< d  1)

Unstr. May’s model PS! 0 PS! 0 or 1

Competition PS! 0 PS! 0 or 1

Mutualism PS! 0 PS! 0 or 1

Predation PS! 0 PS! 0 or 1

Struct. Cascade PS! 0 PS! 0 or 1

Niche PS! 0 x⇤ not deterministic and PS! 0 or 1

Nested hierarchy PS! 0 x⇤ not deterministic and PS! 0 or 1

The probability PS converges towards 0 as S!1 for moderate interactions (and with the mean structural vector) in unstructured (unstr.) and structured (struct.)

networks. For weak interactions, PS! 0 or PS! 1, depending on the parameters. The equilibrium x⇤ is deterministic in the unstructured case and for the cascade

model. x⇤ has a non-trivial distribution and is feasible with positive probability for the niche and nested-hierarchy models.

https://doi.org/10.1371/journal.pcbi.1005988.t001
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unstructured and cascade models, a particular realisation of the interaction matrix A will influ-
ence the equilibrium values. Indeed, these highly structured networks and their related mean
structural growth rates induce correlations among the abundances at equilibrium, which pre-
vent a convergence to a deterministic value. We find that the size of the support depends on
the hierarchical position of the species (Fig 6). We performed additional simulations based on
empirical food webs, and find similar results (Figs G and H in S1 Text).

Since the mean structural vector is constructed for the purpose of maximizing the probabil-
ity of feasibility, we have also considered random Gaussian growth rates of positive mean to
complete our analysis. For the niche and nested-hierarchy models, the standard deviations s⇤i
of the abundances at equilibrium are ordered according to the trophic position of the species
within the food web (from basal autotrophs, to intermediate species that are predator and

Fig 5. Convergence of the equilibrium under weak interactions. For S = 10, 50, and 500 the distribution of max(x⇤), in blue, and min
(x⇤), in red, are represented for 1000 simulations for (a) random networks, and (c) the niche model. For S = 500, all simulations are
plotted to illustrate the support of the distribution of x⇤: (b) in random networks, the regime of weak interactions yields asymptotically
deterministic equilibria; (d) in the niche model, the equilibria are no longer deterministic and converge towards a distribution with a
non-trivial support. Species range from top predator (index i = 1) to basal (i = S); in (d), note that the size of the support depends on
the index of the species.

https://doi.org/10.1371/journal.pcbi.1005988.g005
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prey, and to top predators). We find s⇤basal < s⇤intermediate < s⇤top, a result similar to that obtained

with the structural vector, see Figs 3e and 7. This effect, also visible in empirical food webs
(Figs G and H in S1 Text), disappears in two particular cases: 1) for zero mean Gaussian ran-
dom growth rates; 2) when the growth rate standard-deviation becomes large. In both cases,
the equilibria then become independent of species trophic position (Figs G and I in S1 Text).

Discussion

Our results can be summarised as follows: for the cases compatible with May’s [10] and Allesi-
na’s [15, 16] framework where δ = 1/2 (moderate interactions), there exist almost surely no fea-
sible equilibria in species-rich systems for any of the models considered. For weak interactions
in randomly structured systems, feasibility is granted; also, the stability criteria are trivially
asymptotically satisfied. Therefore, in such situations, the criteria are basically void of informa-
tion. However, including realistic structure in trophic systems, we find that the results are no
longer trivial.

As a general message, future work tackling dynamical stability must be preceded by a feasi-
bility analysis. In our Lotka-Volterra framework, this involves knowledge of the structure and
intensity of interactions, and of the growth rates. Feasibility can then be easily evaluated. Our

Fig 6. Behaviour of the structured models under weak interactions with the mean structural vector. In the first row, we plot for
different values of S the envelop (the maximum and the minimal value) of the equilibrium x⇤ among 1000 simulations. The species
have been assigned a number between zero (top species) and one (basal species) corresponding to their hierarchy in the web. In the
second row, the standard deviations of x⇤i for i = 1 (top predator), i = S/2 (intermediate) and i = S (basal) are represented as a function
of S. The parameters are C = 0.25, σ = 0.4 and θ = −1. (a and b) In the cascade model, although hierarchically ordered, species tend to
behave similarly with regard to convergence as S grows. The equilibrium converges almost surely to the vector 1. (c - f) The niche and
the nested-hierarchy models keep the randomness of the equilibrium when S grows, even under weak interactions.

https://doi.org/10.1371/journal.pcbi.1005988.g006
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results indicate that sensible information on the dynamics of natural systems will be obtained
by concentrating on the interplay between ecological structure, strengths of interaction
weights, and how interaction strengths are distributed in their architecture.

There are still many other aspects that should be taken into account to reach general con-
clusions about feasibility and stability that better fit natural systems. They are very different
from unstructured systems, and many constraints affect their architecture and dynamics. A
first question simply concerns system size in terms of species richness S. Most described sys-
tems are middle sized, but large webs do exist [41, 42], so that mathematical study focusing on
large S limits can be justified. An intriguing aspect here is how smaller and well-definable webs
are dynamically embedded in larger species-rich systems. For example, it has been found that
top predators have a stabilising effect on food webs by coupling fast and slow energy channels
in natural aquatic systems [43]. This question could be framed in a general theory for the
“inverse pyramid of habitat”, which explores the consequences of the ubiquitous (but often
overlooked) observation that species located at higher trophic levels tend to have larger home
ranges [44]. In this respect, the spatial structure of the system is relevant and has non-trivial
consequences for its dynamics [45, 46], a research framework that is currently expanding (e.g.,
[47–49]).

Relevant to system size lies also the question of how network nodes are defined: taxonomic
resolution is often heterogeneous in observed food webs, with basal species being more often
pooled (e.g., phytoplankton being considered as a single species). Secondly, species richness S
and connectance C are usually treated as independent parameters, while it has been described
that C decreases with S in different systems [50], thus restricting the parameter space to be
explored. Finally, even if topology per se has been suggested to play a minor role in system sta-
bility [20], we showed that network architecture does play a non-trivial role on equilibrium
abundances. Layer architectures as those produced by the niche and nested-hierarchy models
yield ecologically sensible results; exploring other structural models [21, 51–53] and especially
natural architectures is necessary.

Fig 7. Empirical distribution of top, intermediate and basal species under a regime of weak interactions. (a) Cascade model with S = 800.
(b) Niche model with S = 800. (c) Nested-hierarchy model with S = 800. The same parameters as in Fig 6 have been used among 1000
simulations. (d) The distribution of a top, intermediate and basal species from the empirical food web Stony is illustrated (see S1 Text). The
interactions strengths have been simulated similarly as for any structured web. The mean structural vector has been simulated with Monte-Carlo
methods (200 trials).

https://doi.org/10.1371/journal.pcbi.1005988.g007
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Apart from these structural considerations, ecologists are confronted by a more elusive
issue, the estimation of demographic parameters. To make sense, the investigation of feasibility
and stability should be based on meaningful parameter values. The growth rate vector r that
appears in Lotka-Volterra dynamics is mostly unknown or very difficult to obtain experimen-
tally. One can either keep this vector as an intrinsic free parameter or assume that such growth
rates change with interaction weights, as in [20] or with our mean structural vector. The esti-
mation of interaction parameters is also far from trivial [54–57]. Experimental studies (see,
e.g., [20, 58, 59]) choose interaction weights indirectly, according to particular methods like
predator-prey mass ratio models, biomass flux, or the Ecopath method (see, e.g., [60–62]).
Additionally, one unresolved question is how intraspecific competition scales with average
interaction strength, which is perhaps the most important ingredient for stability (e.g., [10, 15,
58, 63]), and also plays a role in feasibility (see Proposition S.3.2 in S1 Text). Also, if the magni-
tude of intraspecific competition can be assumed to be independent of S, this is likely not the
case with interspecific interactions (captured by our parameter δ), which has been shown to
play a key role in mutualistic networks [28]. This question is related to the study of weak inter-
actions, which have been shown to promote stability [19, 32, 58, 59] and here feasibility.
Finally, one must consider that these parameters do scale with body size [64], which defines a
constraint between parameter values and network structure, as large-bodied species typically
populate higher trophic levels. Interestingly, this allometric relationship may underlie the
result that stability depends on the link between trophic position and interaction strength [20],
and our finding that abundance variability scales with trophic position.

For mathematical tractability, many studies on the dynamics of food webs, including ours,
rely on Lotka-Volterra models with mass-action type interactions (the so-called Holling type I
functional response). However, investigations on the number of prey eaten per predator and
unit time in simple systems do not support this modelling assumption. There exists a vast liter-
ature on the subject and the choice of a sensible functional response is still debated [65, 66]. In
Section S.5 of the S1 Text, we studied a predation unstructured model with a Holling type II
functional response. We found, independently of the choice of the regime δ, that the system
behaves similarly to the Lotka-Volterra model with weak interactions. Here, the saturation
inherent to Holling type II functional response makes interactions weak, irrespectively of the
parameter δ. It shows that interaction dynamics can strongly affect system feasibility in preda-
tor models. Other aspects related to interspecific interactions affect community dynamics, e.g.,
evolving trait-mediated direct and indirect interaction weights [67–69], ontogenetic shifts in
interactions [70], or high-order interactions whereby the interaction between two species is
modulated by one or more other species [71]. Also, it has been shown that “foraging adapta-
tion” by predators affects the dynamics of food webs [72]. Such non-linearities in species inter-
actions have been explored from the stability point of view of systems adjusted to be feasible
[73–75]. However, since the precise way interactions are modelled has non-trivial conse-
quences on system dynamics, the relationship between feasibility and complexity should also
be considered in such situations.

May’s approach considered systems with any kind of interaction and not only trophic ones.
An articulate answer on the relationship between stability and complexity should obviously
incorporate all types of interactions relevant for system dynamics (including the effects of eco-
system engineers [76, 77]). This question has been the focus of recent theoretical developments
[78, 79], and empirical studies specifically addressing this question start to emerge [80].

Science faces increasingly complex situations where high-dimensional parameters occur. A
good example is statistical mechanics, for which relevant results have been obtained for highly
complex systems without having a precise knowledge of the microscopic details of a model.
Our results like many cited here follow the same line. However, due to the complexity of
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natural systems, the gap between theoretical and empirical investigations is likely to remain
open. To attain a consensus, the feasibility of the model systems should not be forgotten [23,
24, 26–29], and more effort must be devoted to obtaining empirical and experimental time
series as necessary benchmarks.

Supporting information

S1 Text. Supplementary text. Specific methods, details, definitions and proofs of the results.
(PDF)
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Investigation: Michaël Dougoud, Laura Vinckenbosch, Christian Mazza.
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Writing – original draft: Michaël Dougoud, Laura Vinckenbosch, Rudolf P. Rohr, Louis-
Félix Bersier, Christian Mazza.
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S.1 Summary of the results

Model
Moderate interactions Weak interactions

(� = 1
2) (12 < � 6 1)

U
n
st
ru
ct
u
re
d Random PS ! 0 (Thm. S.3.3) PS ! 0 or 1 (Thm. S.3.5)

Competition PS ! 0 PS ! 0 or 1 (Cor. S.3.8)

Mutualism PS ! 0 PS ! 0 or 1 (Cor. S.3.8)

Predation PS ! 0 PS ! 0 or 1 (Cor. S.3.9)

S
tr
u
ct
u
re
d

Cascade PS ! 0 PS ! 0 or 1

Niche PS ! 0
x
⇤ not deterministic

and PS ! 0 or 1

Nested hierarchy PS ! 0
x
⇤ not deterministic

and PS ! 0 or 1

Supplementary Table A Summary of the di↵erent results presented on PS for S ! 1.
The results are analytical if specified in brackets and otherwise obtained by simulations (see
Sections S.3.1.2 and S.3.2.2 as well as Main Text).

S.2 Model and methods

S.2.1 Feasibility and stability in dynamical systems

Consider dynamics driven by a general system of first order autonomous ordinary di↵erential
equations

dxi(t)

dt
= fi (x(t)) , i 2 S = {1, . . . , S} , t > 0,

with f = (f1, . . . , fS) : RS
! RS a di↵erentiable function and x(t) = (x1(t), . . . , xS(t)) 2 RS .

Solutions x(t) of this system evolve in time and their trajectories are rarely describable as such,
especially in high dimensions. However, there are some important features that can be exhibited
without solving the system. One of the most instructive is the existence of equilibria, which are
points x⇤ in the phase space RS where the solution of the system does not vary in time, that is
fi(x⇤) = 0 for all i 2 S. A trajectory reaching an equilibrium remains indefinitely at this point.
If x⇤ belongs to the admissibility domain of the model (i.e., all x⇤i > 0 for ecological systems),
then it is called feasible. Unfeasible equilibria are well-defined in the mathematical sense, but
have to be rejected in the perspective of the application.

If small perturbations of the trajectory in the neighbourhood of the equilibrium x
⇤ fade over

time, so that the system tends to restore the equilibrium, then x
⇤ is said to be locally stable.
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This property is related to the derivatives of the function f . More specifically, an equilibrium

x
⇤ is linearly stable when the Jacobian matrix J(x⇤) =

⇣
@fi
@xj

(x⇤)
⌘
evaluated at the equilibrium

has only eigenvalues with negative real parts (see [11], [67] or [68]).

S.2.2 Lotka-Volterra model

In the context of ecological networks, the dynamics of interacting species is commonly described
by the Lotka-Volterra equations (see e.g. [69, 70, 29]). The function f can be written as

dxi
dt

= xi

0

@ri + ✓xi +
SX

j=1

aij

(CS)�
xj

1

A = fi(x), i 2 S = {1, · · · , S}, (S1)

where xi denotes the abundance of species i, ✓ < 0 is a friction coe�cient (intraspecific com-
petition, assumed to be the same for all species), ri describes the intrinsic growth rate of i and
the interaction coe�cients aij stand for the per capita e↵ect of species j on species i. The con-
nectance C denotes the proportion of links present in the network with respect to the number
of all possible links S(S � 1) or S2, depending on the model. The product CS is a measure of
the complexity of the system, and is the average number of links between two species. The term
(CS)� is introduced as a normalisation of the interactions strength, with � > 0 a parameter
controlling this renormalisation (see 2.3.3 below). In matrix form, the system writes

dx

dt
= x �

✓
r +

✓
✓ I +

A

(CS)�

◆
x

◆
, (S2)

where I denotes the S ⇥ S identity matrix, A = (aij)16i,j6S is the interaction matrix, r =
(r1, . . . , rS) is the growth rates vector and � denotes the Hadamard product, that is x � y =
(x1y1, . . . , xSyS).

The admissibility domain of this model is the positive orthant, that is x 2 RS with xi > 0
for all i. A feasible equilibrium must then satisfy x

⇤
i > 0 for all species i 2 S and

x
⇤ =

✓
�✓ I �

A

(CS)�

◆�1

r, (S3)

so that the right hand side of (S2) equals zero, assuming this inverse matrix exists. Such
an equilibrium is locally stable if the Jacobian matrix (also named community matrix in this
context)

J (x⇤) = diag (x⇤)

✓
✓ I +

A

(CS)�

◆
(S4)

has all eigenvalues with negative real part. As one can see in the previous equation, this matrix
depends explicitly on the equilibrium abundances x

⇤ (diag (x⇤) denotes the matrix with x
⇤ in

the diagonal and 0 everywhere else) and it should not be confused with the interaction matrix A.

Several ecological models have been developed with the goal of understanding network struc-
ture and its e↵ects on system dynamics [71, 10, 17, 18, 28]. Those models generate essentially
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di↵erent types of network structures, and consequently particular interaction matrices A. In
order to exhibit the particular e↵ects of a structure on the dynamics of systems, the coe�cients
aij can be randomised. This allows the exploration of some behaviour of the models and the
detection of their key features. A direct consequence in considering random interactions is that
feasibility and stability have to be considered from a probabilistic point of view. We define
therefore the probability of feasibility of an equilibrium as

PS = P (x⇤i > 0 8i 2 S) . (S5)

The purpose of this work is to study this probability, which expresses the likelihood of a model
to provide feasible equilibria, for which the stability can eventually be examined.

S.2.3 Interactions

The interaction matrix A describes firstly who interacts with whom in the network (the struc-
ture), and secondly what is the type of these interactions: if aij < 0 and aji < 0, species i and j

compete with each other; if aij > 0 and aji > 0, their interaction is mutualistic and they both
benefit from the presence of each other; if aij > 0 and aji < 0, then species i preys upon species
j; if aij = 0, species j has no direct e↵ect on i.

The models of complex ecological networks that we consider can be divided into two main
categories: unstructured and structured models. The former consist in webs for which the
topological structure is completely free and random. This equates to considering networks
based on Erdős-Rényi graphs, which are constructed by adding randomly edges between nodes
with the same probability C. Here, we consider four of those models depending on the type
of interactions: random (as in May’s formalism [10]), mutualistic, competitive and predator-
prey. Structured models define stochastic rules for the construction of the underlying graphs
so that not all graphs are equally likely. This is the case in the three models studied here: the
cascade [17], the niche [18] and the nested-hierarchy model [28]. Since these three models were
built to represent food webs, only predator-prey interactions are considered. The section Method
in the Main Text describes their construction in detail. Suppl. Fig. L provides an example of
network samples for the unstructured predator-prey model and for the structured cascade and
niche model.

S.2.3.1 Interaction models on unstructured networks

Random network. This model introduced by May in 1972 [10] considers both the structure
and the type of interactions as fully random. The interactions are independent and identically
distributed (i.i.d.) centred random variables with common standard deviation � and can thus be
either positive or negative, corresponding to a mixture of competition, mutualism and predation.
The coe�cients equal 0 independently of their position, with a fixed probability 1 � C. Note
that aij = 0 does not necessary imply aji = 0, so that amensalism (0,�) and commensalism
(0,+) interactions are also possible. In this model, the connectance is given by C = L/S

2, where
L is the number of links in the network.

Mutualistic network. This model considers only mutualistic interactions (+,+). The diagonal
coe�cients are aii = 0 and any pair of species (i, j), i < j is linked with probability C. If the
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pair (i, j) is not linked, then aij = aji = 0, otherwise the interactions strength aij and aji are
positive i.i.d. random variables. The elements of A are almost all i.i.d., except for the pairs aij
and aji, which are only independent conditionally on the fact that they are di↵erent from 0. In
this model, the connectance is given by C = L/S(S � 1).

Competitive network. This model is built in the exact same manner as the previous one,
except that the interactions are nonpositive random variables in such a way that there are only
competitive interactions (�,�).

Predator-prey network. This is an example of an unstructured model for predation. The
diagonal coe�cients are aii = 0 and any pair of species (i, j), i < j is linked with probability
C. If the pair (i, j) is not linked, then aij = aji = 0, otherwise the interactions strength
are independently sampled, with the restriction that sign(aij) = � sign(aji). This results in a
sign antisymmetric interaction matrix whose elements are identically distributed and almost all
independent, except for the pairs (aij , aji), which are correlated by their sign. The connectance
in this model is given by C = L/S(S � 1).

S.2.3.2 Interaction models on structured networks

Cascade model. This model introduced by Cohen et al. [17] is an example of structured food
webs. The interactions are of predator-prey type. The species are ordered on a line and they can
feed only on species with a strictly lower rank, excluding any loop in the network. The resulting
interaction matrix A has an upper diagonal with nonnegative i.i.d. entries and a lower diagonal
with nonpositive i.i.d. entries. An upper diagonal entry aij , i < j can be zero with probability
1�C and in this case aji = aij = 0. The diagonal of A consists in zeros and the connectance is
C = L/S(S � 1).

Niche model. In 2000, Williams and Martinez [18] proposed a new model that permits loops
(including cannibalistic loops), and that generates purely interval food webs. Each species is
randomly assigned three numbers: a niche value, a range radius proportional to the niche value
and a range centre. Species feed on all species whose niche value falls into their range. The
species with the smallest niche value has a range 0 to ensure the presence of, at least, one basal
species. This defines the so-called adjacency matrix of the network: ↵ with ↵ij = 1 if i preys
upon j and ↵ij = 0 otherwise. The parameters of the probability distributions of the niche
and the range are chosen in order to obtain an average connectance C/2 in the matrix ↵. For
the construction of the corresponding interaction matrix, one multiplies the entries of ↵ with
positive i.i.d. values and the entries of ↵t with negative i.i.d. values, and finally one adds up the
two corresponding matrices. This results in a interaction matrix A with upper diagonal with
mostly (but not exclusively) nonnegative entries, and lower diagonal entries mostly nonpositive.
The average connectance of A is C = L/S

2. Notice that this construction is slightly di↵erent
from the one proposed by Allesina and Tang in [15], since if species i preys on j and vice-versa,
those interactions do not cancel out but are added in A. The combination of both interactions
can either be mutualistic or competitive, or can remain a predator-prey interaction.

Nested-hierarchy model. Cattin et al. [28] proposed a model that tries to implicitly take
evolution into account and relaxes the intervality of the diets of the niche model. The model
creates a nested hierarchy between species driven by phylogenetic constraints. Two numbers
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are randomly assigned to each species: a niche value and a number of prey that depends on
the niche value. The species with the smallest niche value has no prey. After having reordered
the species according to their niche value, prey are assigned to species starting with the species
that has the smallest niche value, according to the following rule: for a consumer i, one chooses
randomly a prey j with smaller niche value; then, one considers a pool of prey consisting of all
prey consumed by other consumers of j; consumer i will then be assigned prey among this pool;
if the pool is too small, choose another pool, and if this is still not possible, choose randomly
a new prey. This algorithm builds the adjacency matrix of the network ↵, whose connectance
is set on average to C/2 by tuning the parameters of the probability distribution of the niche
values and the number of links of each species. The interaction matrix A is then constructed in
the exact same way as for the niche model and the connectance is C = L/S

2.

S.2.3.3 Interaction strength

Intensity of interactions plays a key role for the local stability of networks [30, 31]. As already
suggested by May’s criterion [10], in the framework of the random model, interactions strength
should decrease at least at rate 1p

CS
in order to preserve stability when complexity CS increases.

This consideration motivates the introduction of the normalising parameter � > 0 in (S2) for the
study of ecological feasibility of equilibria. Three regimes naturally emerge: strong interactions
(� = 0), moderate interactions (� = 1/2) and weak interactions (� = 1). A useful approach for
the interpretation of these di↵erent regimes is the weight of a node in the network. Consider
for example the random model. As the network is unstructured, all species have on average the
same role, and the expected total weight of their interactions is

Wi =
1

(CS)�

SX

j=1

E (|aij |) =
1

(CS)�
S E (|a11|) = (CS)1�� E (|a11| | a11 6= 0)

since aij are i.i.d. by assumption. One sees that for � = 1, Wi is constant and does not
depend on the complexity. For � = 1

2 , the total weight is proportional to the square root of
the complexity, and for � = 0, Wi depends linearly on the complexity. From the mathematical
point of view, these three regimes correspond to three normalisation of the sum of i.i.d. random
variables. Indeed, let X1, X2, . . . be a sequence of i.i.d. centred random variables. The rescaled
sum 1

n�

Pn
i=1Xi converges almost surely to zero if 1

2 < � 6 1 (law of large numbers). If

� = 1
2 , the central limit theorem states that 1

n�

Pn
i=1Xi converges in distribution to a normally

distributed random variable with mean zero and finite standard deviation. Proposition S.3.2
and Theorem S.3.5 below show the link between these probabilistic regimes and the nature
of the equilibrium as the size of the network goes to infinity, depending on the parameter �.
While x

⇤ converges to a deterministic value when interactions are weak (� = 1), it obeys a
central limit theorem and converges to a well-defined random variable when the interactions are
moderate (� = 1

2). Finally, if 0 6 � <
1
2 , the rescaled sum does not converge and its standard

deviation explodes. Consequently, the case of strong interactions (� = 0) is not studied, as the
mathematical problem is asymptotically ill-posed.
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S.2.4 Growth rates

The parameter r is of particular interest when studying feasibility as illustrated in [26]. For any
fixed realisation of the random interaction matrix A, it is always possible to tune the parameter
r in order to get any desired equilibrium. Choose any vector u 2 RS and set

r(u) =

✓
�✓I �

A

(CS)�

◆
u

as a structural growth rates vector. A glance at (S3) shows immediately that the resulting
equilibrium is x⇤ = u. Consider now the all-ones vector in RS . This direction is in a sense
the most feasible, since it is as far as possible from the boundaries of the admissibility domain
(i.e. the positive orthant). Setting the growth rates vector to the so-called structural vector
r( ) leads the equilibrium deterministically to x

⇤ = . Interestingly, the authors of [20] studied
stability using non-random interaction weights. They used r(u) with u = (�d/✓) , for some
positive constant d > 0, to avoid transcritical bifurcations where the abundances of the steady
state x

⇤
i become negative. They argue that with this particular choice, the only way in which

a species can become extinct is via a degenerate bifurcation that makes a positive equilibrium
unstable, causing the system to move suddenly to a di↵erent equilibrium point.

However, choosing the parameter r in such a way, i.e., contingently to A, is clearly uninfor-
mative as it erases the whole structure of the model, and nips the purpose of the randomisation
in the bud. The parameter r should thus not be set according to a particular realisation of A.
This can be achieved with, for example, the mean structural vector v defined by

v = E (r( )) = E
✓
�✓I �

A

(CS)�

◆
· . (S6)

This vector is deterministic, therefore clearly independent of the randomness of A, and it provides
equilibria that are, on average, the most feasible. Choosing this v as growth rates vector allows
then to study feasibility in the most favourable conditions. The mean structural vectors of the
seven models of interest are given in Table 2.

The analytical results of Sections S.3.1.1 and S.3.2.1 hold for more general growth rates
vector than v. They allow to consider random vectors r = (ri) with i.i.d. entries. In the case
of unstructured models, v is indeed a particular case of this type of vectors, as the entries are
all identical and deterministic, therefore independent of each other. In the following, we always
illustrate our results with the mean structural vector v, unless specified.

S.3 Probability of feasibility

We study analytically the probability of feasibility PS in the framework of the random model.
For moderate interactions, PS decreases exponentially with the size of the system. For weak
interactions, PS is asymptotically equal to one when the growth rate vector is set to v (see
Eq. (S6)). We show that for other choices of growth vector, if the interactions are weak, then PS

either equals one or zero, depending on the value of the parameters. We provide estimations of
PS by means of Monte Carlo simulations for the other models and observe the same phenomenon.
In the case of weak interactions, PS can be estimated analytically for all unstructured models.
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Model Mean interaction Mean structural vector

Random vi = |✓|� (CS)1��
µA

Competition E(aij | aij 6= 0) = µA vi = |✓|�
C(S�1)
(CS)�

µA

Mutualism vi = |✓|�
C(S�1)
(CS)�

µA

Predation

E(aij | aij > 0) = µA+ > 0 and

vi = |✓|� (CS)1��
·
µA�+µA+

2

Cascade

E(aji | aij < 0) = µA� < 0

vi = |✓|�
i�1

(CS)�
C µA� �

S�i
(CS)�

C µA+

Niche Simulated

Nested hierarchy Simulated

Supplementary Table B Models of interactions and their corresponding mean structural
vector v. Note that the form of v is the same for the random, competition and mutualism models.
In a competitive system, µA < 0 and in a mutualistic one, µA > 0. In all unstructured models
(random, competition, mutualism, predation), the mean structural vector has the same direction
as the all-ones vector, meaning that the structural growth rates are the same for all species. For
the structured models (cascade, niche and nested hierarchy), species do have di↵erent roles in
the network, while in the other models all species behave, on average, identically. The mean
structural vector follows then a particular direction which is no more the all-ones vector. One
sees that, for the cascade model, for appropriate choice of the parameters ✓, µA+ and µA� leads
to a vector v which has negative entries for species with small indices i (top predators) and
positive entries for species with large indices (basal species). This type of growth rate vector
is a characteristic of such networks [69, 70]. For the niche and the nested hierarchy models,
the algorithmic construction of the interaction matrix makes the formula of their respective v

very complicated. They are therefore obtained by Monte Carlo simulations. As for the cascade
model, negative growth rates are observed.
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S.3.1 Moderate interactions

We show that in the random model with moderate interactions, there exists asymptotically
almost surely no feasible equilibrium of the system (S1). The lack of structure of this model
brings independence of the entries of x⇤, the biomasses at equilibrium. Moreover, the rate of
normalisation � = 1

2 makes these entries follow asymptotically a normal law. Thus, when the
number of species becomes large, there is a smaller and smaller probability that all of them have
positive equilibrium, as illustrated in Suppl. Fig. A and Fig. 1, Main Text.

This phenomenon is a key feature of this model and does not depend on the choice of
the intrinsic rates r. Indeed, we can show analytically that the probability of persistence at
equilibrium goes towards zero for any choice of a random vector r with i.i.d. entries. This
framework contains the particular case where the intrinsic rates are all equal, i.e. the same
direction as v, the mean structural vector of the random model.

We extend this study by estimating PS in the other unstructured and structured models by
simulations. For each model, one samples independent realisations of the interaction matrix A

and sets the growth rates vector to the mean structural vector v of the model. The equilibrium is
found according to Equation (S3) and PS is estimated by the proportion at which the equilibrium
is admissible. The simulation results are analogous to the random model in the sense that PS

decreases exponentially towards zero with S. Note that we also performed simulations for the
random model, whose results correspond nicely to the analytical prediction (see Suppl. Fig. A
(a)).

S.3.1.1 Analytical results

First, we express the law of x⇤i for arbitrary large S. Our results ensue from the direct application,
with some extensions, of Geman’s work [33] on solution of random large systems. They hold
under the following assumptions:

Assumption S.3.1. In the Lotka-Volterra model (S1), we assume that

(i) � = 1
2 ;

(ii) the interaction matrix A = (aij) has i.i.d. entries with common mean E(a11) = 0;

(iii) the intrinsic growth rates vector r = (ri) has i.i.d. entries;

(iv) r and A are independent;

(v) the second moments of the laws of A and r satisfy
E(r21)E(a211)

|✓|2 <
1
4 ;

(vi) there exists a constant  such that E(|a11|S) < S
S , for all S � 2;

(vii) the matrix (✓I +A/
p
CS), where I denotes the S ⇥ S identity matrix, is nonsingular.

The assumptions (v) and (vi) on the second and higher moments of A and r are very natural
and not restrictive, since they are satisfied by a wide collection of laws (normal, uniform, beta,
gamma, lognormal,...) as long as the chosen standard deviation is not too large. Note also that
the mean structural vector satisfies these assumptions. The last condition allows us to consider
that the solution to (S3) always exists.
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Proposition S.3.2. Under Assumptions S.3.1, the biomasses at equilibrium of the model (S1)
converge in law towards Gaussian random variables:

x
⇤
i

L
=) N

 
�
E (r1)

✓
,
Var(r1)

✓2
+

E
�
r
2
1

�
�
2

✓2 (✓2 � �2)

!
, for all i = 1, . . . , S. (S7)

Moreover, for every fixed 1 6 k 6 S, the collection (x⇤1, ..., x
⇤
k) has independent entries.

Proof. The proof is a generalisation of a result given in [33]. We will assume without loss of
generality that C = 1. Indeed, E( 1p

C
aij) = 0 and Var( 1p

C
aij) = Var(aij |aij 6= 0) so that in the

case of moderate interactions the variance of the aij is preserved when dividing any aij by
p
C.

Consider the system (1),

�✓x
⇤ = r +

1
p
S
Ax

⇤
.

First approach the solution of the system by a Neumann progression which is given by

�✓x
⇤ = r +

1X

k=1

✓
A
p
S

◆k ✓
�
1

✓

◆k

r.

As in [33], define

↵r,✓ (i, k, S) =

"✓
A
p
S

◆k ✓
�
1

✓

◆k

r

#

i

=

✓
�
1

✓

◆k ✓ 1
p
S

◆k X

l1,...,lk

ail1al1l2 ...alk�1lkrlk , (S8)

which is simply the ith component of
⇣

Ap
S

⌘k �
�

1
✓

�k
r. We compute the joint moments of the ↵r,✓

and show that they are the same as those of normal random variables. For m fixed and distinct

pairs (kj , nj)16j6m we thus compute E
⇣Qm

j=1 ↵r,✓ (ij , kj , S)
nj

⌘
. This involves the same combi-

natorics as the one employed in [33] as mixing terms from (S8) arise. Indeed for asymptotical
contributions, each chain al1l2 ...alk�1lkrlk has to be paired exactly with itself. Using moreover
independence of the (aij) and the (ri), this gives the joint moments

E

0

@
mY

j=1

↵r,✓ (ij , kj , S)
nj

1

A =

(Qm
j=1 E(r21)

nj
2
�
�
✓

�kjnj
Qnj/2

p=1 (2p� 1) if every nj are even

0 otherwise.

These are the joint moments of independent Gaussian random variables, i.e.

(↵r,✓ (i1, k1, S) , ...,↵r,✓ (im, km, S))
L
=) (Z1, ..., Zm) ,

where Zj ⇠ S

⇣
0, E

�
r
2
1

�
�2kj

✓2kj

⌘
are independent. Returning now to the Neumann progression

and by calculating variance and expectation, we find that when S ! 1

lim
S!1

x
⇤
i = x

⇤,1
i ⇠ N

 
�
E (r1)

✓
,
Var(r1)

✓2
+

E
�
r
2
1

�
�
2

✓2 (✓2 � �2)

!
.

⌅
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This result is similar to that obtained in [71, equations (16.12) and (16.21)], where mean,
variance, and coe�cient of variation have been computed. The normal asymptotical distribution
and the fact that the equilibria are asymptotically i.i.d. from the previous Proposition S.3.2 allow
to go one step further and to show that there exists almost surely no feasible equilibrium for
species-rich systems of type (1).

Theorem S.3.3. Under Assumption S.3.1, the probability that an equilibrium of model (S1) is
feasible tends toward zero. That is limS!1 PS = 0.

Proof. Let us define P
(k)
S = P

⇣
x
⇤
j > 0, 8j = 1, . . . , k

⌘
. With this notation, PS = P

(S)
S . The

convergence in law in (S7), as well as the independence of (x⇤i ) imply

0 6 lim
S!1

PS 6 lim sup
S!1

P
(S)
S

6 lim sup
S!1

P
(k)
S

= P
�
x
⇤
j > 0, 8j = 1, . . . , k

�

= �

0

@ E(r1)q
Var(r1) + E

�
r21

�
�2

✓2��2

1

A
k

,

for all k > 1 and where � denotes the standard Gaussian cumulative distribution function. Since
the probability on the right-hand side is strictly less than 1, this implies that lim supS!1 PS =
0. ⌅

When considering the mean structural vector of the random model r = v (see Suppl.Table 2),
the previous proof allows to approximate the probability that an equilibrium is feasible in the
following way:

PS ⇡ �

 r
✓2 � �2

�2

!S

, (S9)

which is represented in Suppl. Fig. A.

S.3.1.2 Simulations

The exponential decrease of PS is not restricted to the random model, for which our analytical
result holds. Indeed, we have computed numerically the probability of feasibility for the other
models, as well as for the random model (see Fig. 1, Main Text). The growth rates vector is set
to the mean structural vector for each model respectively (Table 2).

An interaction is non-zero with probability C. We choose aij ⇠ N (0,�) for any non-zero
entries of the interaction matrix A in the random model, i.e. when the sign of the interaction
does not matter. In this sense, E(aij) = 0 and Var(aij) = C · Var(aij |aij 6= 0) = C · �

2. In
the other cases, a strictly positive interaction is randomly drawn from a folded normal distri-
bution such that aij ⇠ |N (0,�)|. The expectation is E(aij |aij 6= 0) = �

p
2/⇡ and the variance

Var(aij |aij 6= 0) = �
2 (1� 2/⇡). A strictly negative interaction is similarly sampled such that

aij ⇠ � |N (0,�)|.
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In Fig. 1 of Main Text, the connectance as been fixed to C = 0.25 for each model. To reach
such a connectance in the case of the niche model, we choose the niche values uniformly on the
interval [0; 1], and their breadth according to a Beta random variable with shape parameters
(1, 3).

Supplementary Figure A. Probability of feasibility as a function of number of species S and
standard deviation of interaction strengths � in the random model under moderate interactions
and with the mean structural vector. (a) The continuous line denotes the analytical predictions
of PS , while the error bars are 95% confidence intervals from Monte-Carlo estimates for 1000
simulations. The parameters are C = 1, � = 0.4, ✓ = �1. (b) Analytical prediction of the
probability of feasibility with respect to � and S.

In the case of the niche and nested-hierarchy models, we also simulated the equilibria feasibil-
ity when not using the mean structural vector v. In Suppl. Fig. B, the growth rates are i.i.d. gaus-
sian random variables with standard deviation fixed to 0.15 and mean one (in Suppl. Fig. B (a-d))
or mean zero (in Suppl. Fig. B (e-f)). In the former, the probability of feasibility rapidly de-
creases towards zero, similarly as what is predicted with random models. When E(ri) = 0 for
all i, the equilibria abundances are centered around zero with a positive variance independently
of the species index i. As such, there is no chance to observe PS > 0 for this choice of ri.

S.3.2 Weak interactions

For the case � = 1, we provide the conditions under which the system (S1) possesses almost surely
a feasible equilibrium. In this situation, the interactions between the species become extremely
weak when the size of the system grows. Compared to the moderate case, the variance of the
solution approaches zero allowing us to use a law of large numbers. This drives each component
x
⇤
i of the solution to a constant proportional to its intrinsic growth rate ri as illustrated in

Suppl. Fig. C. This leads to feasible equilibria for any positive growth rate.
Analytical results are given in the case of unstructured models, whereas structured models

are explored by mean of simulations.
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Supplementary Figure B. Equilibria simulated from the niche and nested-hierarchy models
under moderate interactions and for i.i.d. random growth rates. (a-b) The probability of feasi-
bility decreases rapidly when E(ri) = 1. Envelop (the maximum and the minimum value) of the
equilibria for (c-d) E(ri) = 1 and (e-f) E(ri) = 0. In this case PS is always zero. The species
have been assigned a number between zero (top species) and one (basal species) corresponding
to their hierarchy in the web. 500 simulations have been performed for each S. The growth
rates are normally distributed with a fixed standard deviation

p
Var(ri) = 0.15.

S.3.2.1 Analytical results

We begin by giving the assumptions under which our analytical results hold :

Assumption S.3.4. In the Lotka-Volterra model (S1), we assume that

(i) � = 1;

(ii) the interaction matrix A = (aij) has i.i.d. entries with common mean E(a11) = CµA so
that |µA| < |✓|;

(iii) the intrinsic growth rates vector r = (ri) has bounded entries;

(iv) the law of the (aij) satisfies E(a8ij) < 1;

(v) the matrix (✓I +A/(CS)) is nonsingular.

As for the Assumptions S.3.1, these conditions are not restrictive on the choice of the dis-
tributions for the (aij). The mean structural vector satisfies the Assumption S.3.4 (iii) for all
the models that are considered. In (ii), E(a11) = CµA is equivalent to E(a11 | a11 6= 0) = µA

13



since C is the probability that an entry of the matrix is set to 0. Note furthermore that, in the
settings of weak interactions, the entries of A are divided by CS so that E(aij/(CS)) = µA/S.

We first introduce the analytical result for the random model.

Theorem S.3.5. Under Assumption S.3.4 with µA = 0 the asymptotic equilibrium of the
model (S1) is feasible and is given by

x
⇤,1
i = lim

S!1
x
⇤
i =

ri

|✓|
almost surely, for all i = 1, . . . , S.

Moreover, x⇤,1i is almost surely feasible for any r such that ri > 0 for all i.

Proof. The convergence of x⇤i toward ri
|✓| follows directly from results on the solution of large

random systems of linear equations, [33, Thm. 1]. ⌅

In the case of the random model, setting the growth rates vector to v = |✓| · leads thus to
x
⇤,1
i = 1 for all i. But Theorem S.3.5 is more general and allows to consider any growth rates

vector r with bounded entries. In Suppl. Fig. C for example, the entries of r are chosen to take
only two values and one sees that the equilibrium vector also converges only toward two values
(proportional to ri) when S becomes large.

In Assumption S.3.4, the expectation µA does not need to be zero. This enables the deriva-
tion of analytical results in the case of random models in which the mean interaction is positive
(mutualistic and commensalistic interactions) or negative (competitive and amensalistic inter-
actions). Indeed, a generalisation of the previous proof by allowing arbitrary µA leads to the
following:

Theorem S.3.6. Under Assumption S.3.4, the asymptotic equilibrium of the model (S1) is
given by

x
⇤,1
i = lim

S!1
x
⇤
i =

ri

|✓|
+

µA

|✓| (|✓|� µA)
r̄ almost surely, for all i = 1, . . . , S,

where r̄ denotes the arithmetic mean of the entries of r. Moreover, if ri > µA
µA+✓ · r̄ for all

i = 1, . . . , S, then x
⇤,1 is feasible with probability one.

Proof. The proof is analog to the one provided in [33, Thm. 2], where we write Ŵ = W � M

with M the S⇥S matrix with every component set to CµA, W = A and Ŵ is an S⇥S random
matrix with i.i.d. centred entries. ⌅

However, the competition and mutualistic models introduced in Section S.2.3.1 do not com-
pletely satisfy the Assumptions S.3.4, since some dependences are introduced among the entries
of the interaction matrix A. Indeed, aij = 0 , aji = 0, so that commensalistic/amensalistic
interactions are forbidden. Moreover, the particular case of predation leads to a sign antisym-
metric matrix A, i.e. aij > 0 , aji < 0. In the following, we show that the same type of results
are obtained for these cases.

For mutualism or competition, we define the entries of A in the following way,

aij = wij · bij and aji = wji · bij ,
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where (wij) are i.i.d. random variables of mean µA and variance �
2 (e.g. folded normal random

variables) and (bij) are i.i.d. Bernoulli random variables of parameter C.
Note that for every i, j 2 S, E(aij) = E(aji) = CµA, so that if we define M to be the matrix

with all elements set to CµA, the matrix

Ŵ = A�M (S10)

is centred and that Cov(ŵij , ŵji) = µ
2
A ·C(1�C) 6= 0. Like in the proof [33, Thm. 2], we need to

show that kŴ/Sk ! 0. This assertion is based on [72], which gives an upper bound for the norm
of sample covariance matrix, and can be related to the work in [73], where the largest eigenvalue
of random symmetric matrices is studied. Here we will show that kŴ/Sk ! 0 in the framework
of [74], where it is demonstrated that the limiting distribution of the eigenvalues of a sample
covariance matrix 1/SV V

T remains the Marc̃enko-Pastur law, even with some dependencies
among the entries of a centred random matrix V .

Lemma S.3.7. Consider the random matrix Ŵ defined by equation (S10) and assume that there
exists a constant K such that E(|ŵij |

k) 6 K
2k for any k 6 S and 1 6 i, j 6 S. Then

kŴ/Sk ! 0 almost surely.

Proof. The conditions (MP1), (MP2) and (MP3) in [74] still hold for Ŵ in our framework. Thus
letting �max be the largest eigenvalue of 1/SŴŴ

T , the same combinatorial arguments can be
used, and following [74, Section 4] we arrive to

E(�k
max) 6 E

✓
Tr(

1

S
ŴŴ

T )k
◆

6 (2k)!

k!(k + 1)!
S + c ·K

2k +O(1/S)

< 4kS + c ·K
2k +O(1/S),

where c is a constant and Tr(·) the trace operator. Letting ✏ > 0 and using the Markov inequality,
we find

P
✓

1
p
S

����
1

p
S
Ŵ

���� > ✏

◆
= P

⇣
�
k
max > S

k
✏
2k
⌘
6 4kS + cK

2k

Sk✏2k
+O(1/Sk+1),

which goes to zero when S is large and since
P

S P
⇣

1p
S

��� 1p
S
Ŵ

��� > ✏

⌘
< 1 for k > 3, almost

sure convergence holds. ⌅

Corollary S.3.8. Under Assumption S.3.4 with a matrix A so that aij = 0 , aji = 0, and
where E(aij |aij 6= 0) = µA and r = � · , with � 2 R⇤, the asymptotic equilibrium of the
model (S1) is given by

x
⇤,1
i = lim

S!1
x
⇤
i =

�

|✓|� µA
almost surely,

for all i = 1, . . . , S. Under these assumptions and for �/(|✓| � µA) > 0, x⇤,1 is feasible with
probability one.
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Proof. Since each line in A, i.e. the collection (aij)16j6S for arbitrary i 2 S, still contains
independent elements for arbitrary S, the proof is analog to the one of Thm S.3.6 by using
Lemma S.3.7. ⌅

In the case of predation, interactions have the form (+,�), so that the previous Corollary
extends in the following way.

Corollary S.3.9. Consider Assumption S.3.4 with a matrix A so that µA =
µA++µA�

2 , where
E(aij |aij > 0) = µA+ > 0, E(aij |aij < 0) = µA� < 0, and with aij = 0 , aji = 0 and
sign(aij) = � sign(aji). Then for r = � · , with � 2 R⇤, the asymptotic equilibrium of the
model (S1) is given by

x
⇤,1
i = lim

S!1
x
⇤
i =

�

|✓|�
µA++µA�

2

almost surely,

for all i = 1, . . . , S. Under these assumptions and for �/

⇣
|✓|�

µA++µA�
2

⌘
> 0, x⇤,1 is feasible

with probability one.

Consequently, the mean structural vector (see Suppl. Table 2) leads almost surely x
⇤ to the

vector for every unstructured model.

S.3.2.2 Simulations

Unstructured networks. As in the moderate case, simulations have been performed to illus-
trate our analytical results. We illustrate the results for the random model in Suppl. Fig. C.
The outcomes for the other unstructured models are analogous. All random variables aij are
defined as in Section S.3.1.2, with C = 0.25, � = 0.4 and ✓ = �1.
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Supplementary Figure C. Trajectories of the abundances of species through time in the case
of weak interactions (� = 1) for the random model. Half of the species have a growth rate set
to 1, the other half set to 1.5. As predicted analytically (Thm S.3.5), the abundances stabilise
around their intrinsic growth rates (|✓| = 1 and � = 0.4). The simulations have been performed
with MATLAB ode45. (a) With 36 species. (b) With 500 species. Note that for S ! 1,
equilibrium abundances converge to 1 and 1.5.
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Structured networks. The case of the cascade model [17] is illustrated in Suppl. Fig. D (a)
and (b). We represent the envelop of the equilibria for di↵erent S from 1000 simulations with
C = 0.25, � = 0.4 and ✓ = �1. The standard deviation of any x

⇤
i decreases towards zero

when S increases, independently of the role of species i. Using the mean structural vector,
the same convergence to the equilibrium as in the random model is hence obtained. We
hypothesise that this result is a consequence of the cascade model yielding adjacency matrices
with inferior triangular parts constructed like a Erdős-Rényi network. The distribution of a
top, an intermediate and a basal species are illustrated in Suppl. Fig. E (a) and shows that any
species abundance is independent of its role in the web, exactly as in random models.

For the niche model [18] and the nested-hierarchy model [28], a particular phenomenon occurs
that is not observed for the other models. Indeed, simulations show that the equilibrium remains
random when S increases. This result is likely attributable to the construction of the models,
with the standard deviation of the abundances depending on the hierarchical position of the
species. Importantly, standard deviations do not decrease towards zero as the size of the network
grows, as illustrated in Suppl. Fig. D (d) and (f). Indeed, these highly structured networks
and their related mean structural growth rates induce correlations among the abundances at
equilibrium that prevent a convergence to a deterministic value, but rather takes place on a
compact support. This is illustrated by the envelop of the equilibria that is represented in
Suppl. Fig. D (c) and (e) for di↵erent values of S. The empirical distribution of x⇤i for particular
species roles i is illustrated in Suppl. Fig. E. From these results, it is apparent that basal species
may rapidly converge to a deterministic constant. However, for intermediate and top species,
simulations show that the convergence is very likely to occur on a non-trivial support.

We also tested i.i.d. Gaussian random growth rates with �r =
p
Var(ri) = 0.15 for the niche

and the nested-hierarchy models in Suppl. Fig. F. When E(ri) = 1, a similar phenomenon as
what was observed with the mean structural vector appears. The standard deviations of x⇤i
converge towards positive numbers and the resulting distribution of x⇤i depends on the species
index i. However, when E(ri) = 0 or when the standard deviation of ri increases, this particular
hierarchical behavior disappears, as illustrated in Suppl. Figs. F and G. Every equilibria x

⇤
i are

similarly distributed around zero.

S.3.3 Empirical networks

We used our method on empirical food webs to illustrate how species abundances at equilibrium
depend on their intrinsic role in the web. The topology is thus fixed to the observed one and the
interactions are modeled as for any random structured web (see the section Method in the Main
Text). We report the results of four arbitrary networks. In Suppl. Fig. H, the mean structural
vector is used. In Suppl. Fig. I two di↵erent random vectors with i.i.d. components are chosen.
The distributions under weak interactions are also illustrated in Suppl. Fig. E, to allow better
comparison with the niche and the nested-hierarchy models.

S.3.4 Connectance and interactions strengths

In our approach, we fixed the connectance C to arbitrary values in the mathematical develop-
ments, and to fixed values in the simulations. In this section, we briefly explore the consequence
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Supplementary Figure D. Behaviour of the structured models under weak interactions with
the mean structural vector. In the first row, we plot for di↵erent values of S the envelop (the
maximum and the minimal value) of the equilibrium x

⇤ among 1000 simulations. The species
have been assigned a number between zero (top species) and one (basal species) corresponding
to their hierarchy in the web. In the second row, the standard deviations of x

⇤
i for i = 1

(top predator), i = S/2 (intermediate) and i = S (basal) are represented as a function of
S. The parameters are C = 0.25, � = 0.4 and ✓ = �1. (a and b) In the cascade model,
although hierarchically ordered, species tend to behave similarly with regard to convergence as
S grows. The equilibrium converges almost surely to the vector . (c - f) The niche and the
nested-hierarchy models keep the randomness of the equilibrium when S grows, even under weak
interactions.

of a relationship between connectance and species number on feasibility, as observed in several
contributions, e.g. [75, 42]. Observe first that, from the point of view of the average interaction
strength, introducing zeros with a given probability 1�C in the interaction matrix is the same
as multiplying the whole matrix by C. Therefore, one has

A

(CS)�
=

BC

(CS)�
,
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Supplementary Figure E. Empirical distribution of top, intermediate and basal species under
a regime of weak interactions. (a) Cascade model with S = 800. (b) Niche model with S = 800.
(c) Nested-hierarchy model with S = 800. The same parameters as in Suppl. Fig. D have been
used among 1000 simulations. (d) The distribution of a top, intermediate and basal species
from the empirical food web Stony is illustrated. The interactions strength have been simulated
similarly as for any structured web (see Section Method in Main Text). The mean structural
vector has been simulated with Monte-Carlo methods (200 trials).

where B is a matrix with all entries i.i.d. and such that P(bij = 0) = 0. Consider C = 1
S� , for

� > 0, which is a flexible function that adequately captures observed relationships between C

and S. We get
BC

(CS)�
=

B

S�+�(1��)
.

In the Main Text and above, we showed that feasibility is warranted when � + �(1 � �) >
1
2 ,

i.e. for

� >
(12 � �)

(1� �)
.

Taking � > 1
2 leads almost surely to feasible equilibria in the models considered here, inde-

pendently of the exponent �. For � <
1
2 , � can be smaller than 0.5. This shifts the three

previously described regimes for � to the left, so that � can be smaller to reach the same results.
Consequently, the existence of a relationship between C and S does not a↵ect our conclusions.

S.4 Consequences on local stability analysis

Any local stability analysis should be preceded by a feasibility analysis [27, 22, 76]. Indeed,
studying the local stability of a point that is not biologically feasible is not instructive on the
behaviour of the network dynamics. Moreover, the Jacobian matrix of the system (S4), therefore
its eigenvalues too, depend explicitly on x

⇤. Therefore, there is no warranty that randomly
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Supplementary Figure F. Equilibria simulated from the niche and nested-hierarchy models
under weak interactions and for i.i.d. random growth rates. (a-b) The standard deviations of a
top, an intermediate and a basal species are illustrated as a function of S for E(ri) = 1. Envelop
of the equilibria for (c-d) E(ri) = 1 and (e-f) E(ri) = 0. 500 simulations have been performed
for each S. The growth rates are normally distributed with a fixed standard deviation �r = 0.15.

sampling directly the Jacobian may be su�cient to address local stability. Here, we explore this
question, which extends the analyses of May and Allesina and co-workers [10, 15].

S.4.1 Random networks

We first focus on the random model of May [10] in the case of moderate interactions in the
Proposition S.4.1 below. In this case, we find that May’s criterion still holds when we randomly
sample the interaction matrix A (and not directly the Jacobian) under the additional condition
that the equilibrium x

⇤ is feasible.

S.4.1.1 Moderate interactions

In Proposition S.4.1, we first show that May’s criterion for stability, i.e.
p

CS�̃ < |✓|,

is still su�cient for any feasible equilibrium when �̃ is the standard deviation of the normalised
interaction matrix A/(CS)�, and not the standard deviation of the Jacobian matrix of the sys-
tem. Recall that the case of moderate interactions is here very natural, as relying onWigner’s [12]
and Girko’s [77] original convergence results. The criterion simply becomes

� < |✓|,

20



Supplementary Figure G. When the standard deviation �r of i.i.d. random growth rates
increases, equilibria variances of top, intermediate and basal species tend to become similar
under weak interactions in a structured food-web (illustration for the niche model). (a) Boxplot
representation of the distributions. (b) Illustration of the variances ratio between basal and top
(red trace, �2

Basal/�
2
Top) and intermediate and top (blue trace, �2

Intermediate/�
2
Top) as a function of

�r with a 95% confidence interval. 1000 simulations have been performed for each �r, S = 800
and the growth rates are normally distributed with E(ri) = 1.

where � is the standard deviation of A.

Proposition S.4.1. Under Assumption S.3.1 and if

� < |✓|,

any asymptotic feasible equilibrium of the model (S1) is almost surely linearly stable.
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Supplementary Figure H. Species abundance at equilibrium in four empirical food webs with
the mean structural vector. (a-b) Stony, (c-d) Broom, (e-f) El-Verde and (g-h) Little Rock
Lake. The mean of each x

⇤
i is always one due to the mean structural vector, but the variance

depends on the species index i, i.e. on the species role in the web. 2000 simulations of x
⇤

are represented in each case. The mean structural vector has been simulated via Monte-Carlo
methods (200 simulations).

Proof. Consider A/
p
CS so that � < |✓|. This is equivalent to say that B =

⇣
✓I + 1p

CS
A

⌘

possesses only eigenvalues with negative real parts. Define now the symmetric matrix B̃ =

DB + B
T
D, where D = diag

⇣
1p
2

⌘
. Each non-diagonal entry of the matrix B̃ are independent

of the others up to symmetry, and have mean zero and standard deviation �. By the Wigner
semicircle law and May’s criterion, its eigenvalues are almost surely all negative when S ! 1.
The matrix B is thus dissipative when S ! 1, which implies that any feasible equilibrium of
the model (S1) is locally stable (see [76]). ⌅

Note that feasibility is required to conclude on the stability of the equilibrium. Indeed, we
illustrate in Suppl. Fig. J that a stable equilibrium in the sense of J = (✓I+A/

p
CS) (as in [10],

i.e. so that
p
SC� < |✓|), is stable in the sense of J = diag(x⇤)(✓I + A/

p
CS) only when it is

feasible, which we showed is never the case in large systems (see Thm. S.3.3).

S.4.1.2 Weak interactions

In the case of weak interactions, May’s criterion [10] and the criteria for competition and
predation-prey established by Allesina and Tang [15] are asymptotically trivially satisfied if
the parameters are chosen so that the (deterministic) equilibrium is admissible. Indeed, the
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Supplementary Figure I. Species abundance at equilibrium in two empirical food webs with
random growth rates. (a-d) Stony and (e-h) Broom. The growth rates are i.i.d. with mean one
(a-b and e-f) or zero (c-d and g-h) and standard deviation fixed to 0.15. 2000 simulations of
x
⇤ are represented in each case.

criterion becomes �/
p
SC < |✓| and �/

p
SC ! 0 for S ! 1.

Concerning mutualistic networks, the criterion in [15] is non-trivial. We show that this
criterion still holds under the additional condition that x⇤ is feasible:

Proposition S.4.2. Under weak interactions (Assumptions S.3.4) and for a mutualistic inter-
action matrix A, x⇤ is locally stable when x

⇤ is feasible and when

E(|aij |) < |✓|. (S11)

Proof. the inequality (S11) has been computed in [15] using the Geršgorin circles [78]. With
analogous arguments as in the proof of Prop S.4.1, we define the symmetric matrix B̃ = DB +

B
T
D, where D = diag

⇣
1p
2

⌘
and B =

�
✓I + 1

CSA
�
. Its largest eigenvalue has been computed

in [73] and is given by
p
2E(|aij |)+

p
2✓, which is negative when (S11) holds. B is thus dissipative

and consequently the equilibrium locally stable [76]. ⌅

S.4.2 Structured models

Determining stability criteria in structured models is mathematically di�cult, since the entries
of the resulting random matrix J(x⇤) can become highly dependent. In this situation, a direct
use of the classical results in [33, 79, 80] is no longer possible. In Suppl. Fig. K, we illustrate
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Supplementary Figure J. Spectra of the interactions matrix and the Jacobian matrix for
� = 0.5 and S = 1000. The spectrum of the interactions matrix (✓I+A/

p
CS) is represented in

yellow and the eigenvalue with largest real part is highlighted in red. With this renormalisation,
the convergence result of Girko [77] is recovered and, since the parameters are � = 0.4, C = 1
and ✓ = �1, May’s criterion holds. However, the equilibrium is very unlikely to be feasible with
S = 1000 (see Fig. 1, Main text), so that the criterion of Prop. S.4.1 is violated and the resulting
equilibrium is not stable. This is illustrated by the spectrum of the Jacobian matrix J(x⇤) in
cyan. The eigenvalue with largest real part is highlighted in blue.

some spectra of A and J(x⇤) for 50 networks of the three structured models to evidence their
di↵erence. We find that a link between feasibility and stability is very likely to exist, in a similar
way as for unstructured networks.
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Supplementary Figure K. Spectra of the Jacobian matrix for di↵erent values of � in structured
models. The eigenvalues of J(x⇤) are plotted in blue when x

⇤ is feasible, and in red otherwise;
the eigenvalues of the interactions matrix (✓I + A/

p
CS) is represented in yellow. (a - c) For

strong interactions, the systems are degenerate for the three models, i.e. never feasible nor
stable. (d - i) For moderate interactions and weak interactions, we observe the same kind of
relationship between feasibility and stability as for unstructured models. For the cascade model
(d, g), x⇤ converges to a deterministic constant; for the niche and nested-hierarchy models (e, f,
h, i), x⇤ converges on a compact support, which can include negative values. It is thus necessary
to tune the parameters to obtain feasibility; here, we chose S = 150, � = 0.4, C = 0.25 and
✓ = �1 in all cases.

25



Supplementary Figure L. Illustration of some predator-prey networks and adjacency matri-
ces. (a-b) Unstructured model for predation. (c-d) The cascade model. (e-f) The niche model.
The parameters are C = 0.25 and S = 30. The interaction strengths are sampled at random,
according to the procedure described in Section S.2.3. Thicker green arrows represent larger
interaction strengths. Only positive interactions are represented.
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S.5 Feasibilty with a Holling type II functional response

The question of feasibility is of course not restricted to the models studied in the present work.
Instead of the Lotka-Volterra dynamics which was used in the previous and for which the inter-
actions follows a mass action law (Holling type I [81]), we could for example explore the same
question with di↵erent type of functional response.

As an illustration, we consider the following system of di↵erential equations [82] in the
predator-prey model of Section S.2.3.1,

dxi
dt

= xi

0

BBB@
ri + ✓xi +

SX

j2Prey(i)

aij
(CS)�

h+
X

k2Prey(i)

aik
(CS)�

xk

xj +
SX

j2Pred(i)

aij
(CS)�

h+
X

k2Prey(j)

ajk
(CS)�

xk

xj

1

CCCA
(S12)

for i 2 S = {1, . . . , S}, where h > 0 is some constant, Prey(i) is the set of preys of species
i and Pred(i) its set of predators. This kind of functional response changes drastically the
asymptotic behavior of the probability of feasibility as illustrated in Suppl. Fig. M, where we
see it converging to one in the case of moderate interactions (� = 1/2).

The reason for this di↵erence with the Holling type I models comes from the saturation
term. In this mean-field framework, Holling type II dynamics acts has a bu↵er of interactions by
taking into account the number of preys and predators in the system. Asymptotically, it makes
interactions weak, whatever the value of the parameter �. Hence, it ensures the feasibility of the
equilibrium.

To understand this, consider the global e↵ect of any species j 2 S on i given by the generic
term

bij =
aij/(CS)�

h+
P

k2Prey(i) aik/(CS)�xk
xj .

To simplify, assume that each aij is equal to its conditional mean a+ > 0, if i is a predator or
a� 6 0 if i is a prey. Then, considering that, in this predator-prey model, the number of preys
and predators of species i is a contant time CS, that is |Prey(i)| = |Pred(i)| = O(CS) in Landau
notation, bij can be approximated by

bij ⇡
a±

h · (CS)� + � · a+CS x̄
xj ⇡

�̃

CS
xj ,

where a± = a+ if j is a predator and a± = a� otherwise, x̄ is the empirical mean of all considered
xj , � and �̃ are some positive constant. Note that the last approximation holds for 0 6 � 6 1
and S large. Therefore, the order of an interaction bij is 1/CS (weak interaction) no matter
what regime � was initially set.
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Supplementary Figure M. Probability of feasibility under moderate interactions � = 1/2
when considering Holling type II (continuous line) and Holling type I (dotted line) functional
responses. The system considered is the random predator-prey model. The 95%-confidence
intervals are calculated over 1000 simulations. Holling type II reacts as if the interactions were
weak in a mass-action dynamics. In particular, the probability of feasibility approaches one in
this case. For comparison purposes, we set r = , � = 0.4, C = 0.4, and ✓ = �1 in both cases
and in these simulations, h = 1. The system at equilibrium becomes non-linear but has been
solved numerically with the method fsolve in Matlab R2012b.
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