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a b s t r a c t 

The feasibility domain of an ecological community can be described by the set of environmental abi- 

otic and biotic conditions under which all co-occurring and interacting species in a given site and time 

can have positive abundances. Mathematically, the feasibility domain corresponds to the parameter space 

compatible with positive (feasible) solutions at equilibrium for all the state variables in a system under a 

given model of population dynamics. Under specific dynamics, the existence of a feasible equilibrium is a 

necessary condition for species persistence regardless of whether the feasible equilibrium is dynamically 

stable or not. Thus, the size of the feasibility domain can also be used as an indicator of the tolerance 

of a community to random environmental variations. This has motivated a rich research agenda to esti- 

mate the feasibility domain of ecological communities. However, these methodologies typically assume 

that species interactions are static, or that input and output energy flows on each trophic level are un- 

constrained. Yet, this is different to how communities behave in nature. Here, we present a step-by-step 

quantitative guideline providing illustrative examples, computational code, and mathematical proofs to 

study systematically the feasibility domain of ecological communities under changes of interspecific in- 

teractions and subject to different constraints on the trophic energy flows. This guideline covers multi- 

trophic communities that can be formed by any type of interspecific interactions. Importantly, we show 

that the relative size of the feasibility domain can significantly change as a function of the biological 

information taken into consideration. We believe that the availability of these methods can allow us to 

increase our understanding about the limits at which ecological communities may no longer tolerate fur- 

ther environmental perturbations, and can facilitate a stronger integration of theoretical and empirical 

research. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In ecological research, the feasibility of a community corre-

sponds to the existence of an equilibrium point under which all

species have positive abundances ( Case, 20 0 0; Hofbauer and Sig-

mund, 1998; MacArthur, 1970; Meszéna et al., 2006; Pimm, 1982;

Roberts, 1974 ). Indeed, if one is interested in extant species, neg-

ative or zero abundances make no biological sense. Therefore,

studying the feasibility of an ecological community is equal to de-

termining whether under a given set of environmental conditions

(abiotic and biotic) the dynamics of a community exhibits a fea-

sible equilibrium point. That is, feasibility is a binary question: a

community is feasible or not under a given set of environmental
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onditions. Nevertheless, one can also extend the study of feasi-

ility by investigating the range of environmental conditions lead-

ng to a feasible community. This specific range of environmental

onditions is known as the feasibility domain ( Logofet, 1993 ). Thus,

he size of the feasibility domain can be used as an indicator of

he tolerance of a community to random environmental variations

 Rohr et al., 2016; Saavedra et al., 2014 ). This has motivated a rich

esearch agenda to estimate the feasibility of ecological commu-

ities in a systematic manner ( Bastolla et al., 2009; Gilpin, 1975;

oh and Jennings, 1977; Grilli et al., 2017; Logofet, 1993; Meszéna

t al., 2006; Rohr et al., 2014; Saavedra et al., 2017b; Stone, 2016;

andermeer, 1975 ). Yet, it is still unclear how to integrate this sys-

ematic analysis with additional biological information, such as dif-

erences in energy flows across trophic levels or even changes in

he structure of ecological communities. 

Here, we present a step-by-step quantitative guideline to study

he size of the feasibility domain of ecological communities under

https://doi.org/10.1016/j.jtbi.2018.04.030
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hanges of interspecific interactions and subject to different con-

traints on the trophic energy flows. This guideline covers multi-

rophic communities that can be formed by any type of inter-

pecific interactions. While our framework is based on the clas-

ic Lotka-Volterra (LV) dynamics ( Page and Nowak, 2002 ), its ad-

antage is that the structure and limits of the feasible regions

f a large variety of ecological communities can be systemati-

ally studied using convex geometry and probability theory ( Ball,

997; Brondsted, 2012; Logofet, 1993; Rohr et al., 2014 ). Moreover,

he applicability of this approach is not restricted to LV dynam-

cs as long as the dynamics are topologically equivalent ( Cenci and

aavedra, 2018 ). 

This article is organized as follows. First, we discuss the mathe-

atical definition, geometrical representation, and the probabilistic

nterpretation of the feasibility domain in multispecies communi-

ies characterized by LV dynamics. Then, we introduce new tools

o incorporate both changes of species interactions and trophic en-

rgy constraints into the study of feasibility. After that we present

n illustrative example to show how our tools can be applied to

ulti-trophic and changing communities. Finally, we discuss fu-

ure promising avenues of research on feasibility. While we present

n abridged guideline in the text, all the proofs can be found

n the Appendixes A–E, and the computational codes in R Core

eam (2017) is archived on Github. 

. Mathematical definition of feasibility 

We start by assuming that the population dynamics in a mul-

ispecies community can be approximated by a LV system in the

orm 

dN i 

dt 
= N i 

( 

r i + 

S ∑ 

j=1 

a i j N j 

) 

, (1) 

here the variable N i denotes the abundance of species i, S is the

umber of species, the parameter r i is the intrinsic growth rate of

pecies i , and the parameter a ij is the element ( i, j ) of the inter-

ction matrix A and represents the effect of species j on species i

 Case, 20 0 0 ). Note that both the intrinsic growth rates and the el-

ments of the interaction matrix can take either positive, negative,

r zero values. We take into account only non-degenerate interac-

ion matrices, i.e., det ( A ) � = 0 . This assumption is valid since it is

xtremely rare to have degenerate cases even under the setup of

andom matrix theory ( Bruneau and Germinet, 2009 ). 

Under the LV dynamics, the equilibrium state(s) of the popu-

ation is(are) written as the vector N 

∗, which corresponds to the

tate at which d N i /d t = 0 for all species i . This equilibrium state(s)

s(are) given by the solution(s) of the set of equations 

 

∗
i 

( 

r i + 

S ∑ 

j=1 

a i j N 

∗
j 

) 

= 0 . (2) 

The positivity of LV dynamics, i.e., species abundances will

ever be negative with strictly positive initial conditions, imposes

wo types of equilibria ( Takeuchi, 1996 ). There can be either a bor-

er equilibrium, where at least a species goes extinct ( N 

∗
i 

= 0 for

ome species i ), or a feasible equilibrium (also known as interior

quilibrium), where all species have positive abundances ( N 

∗ > 0).

f the feasible equilibrium exists is given by N 

∗ = −A 

−1 · r . More-

ver, one can mathematically prove that for a LV model, the exis-

ence of a feasible equilibrium point is a necessary condition for

pecies persistence (and permanence), whether that feasible equi-

ibrium is dynamically stable or not ( Hofbauer and Sigmund, 1998 ).

The mathematical definition above reveals that feasibility de-

ends strictly on the elements of both the interaction matrix A and

he vector of intrinsic growth rates r ( Song and Saavedra, 2018 ).
his implies that, given an interaction matrix A , only certain com-

inations of species-specific intrinsic growth rates can generate

easible equilibria, i.e., for which we have −A 

−1 · r > 0 . Following

his rationale, studies have been systematically investigating the

easibility of ecological communities by looking at the range of pa-

ameter values of r as a function of a given interaction matrix A

 Bastolla et al., 2009; Grilli et al., 2017; Logofet, 1993; Rohr et al.,

014; Saavedra et al., 2017b; Vandermeer, 1975 ). Importantly, since

nvironmental conditions can be translated into the vital rates of

pecies ( Coulson et al., 2017; Levins, 1968; Meszéna et al., 2006;

oughgarden, 1975 ), the range of intrinsic growth rates leading to

easibility can represent a set of environmental variations tolerated

y the community. 

. Geometrical representation of feasibility 

As explained above, there is only a specific region of the param-

ter space of intrinsic growth rates that leads to feasible equilibria

f a community given by an interaction matrix A . This region is

ypically known as the feasibility domain ( Logofet, 1993 ). Formally,

his feasibility domain is described as 

 F ( A ) = { r = N 

∗
1 v 1 + · · · + N 

∗
S v S , with N 

∗
1 > 0 , . . . , N 

∗
n > 0 } , (3) 

here the vector v j is the negative of the j th columns of the inter-

ction matrix A : 

 = 

⎡ 

⎣ 

a 11 · · · a 1 S 
. . . 

. . . 
. . . 

a S1 · · · a SS 

⎤ 

⎦ = 

⎡ 

⎢ ⎣ 

. . . 
. . . 

. . . 
−v 1 −v 2 . . . −v S 

. . . 
. . . 

. . . 

⎤ 

⎥ ⎦ 

. (4) 

n other terms, the vectors of intrinsic growth rates inside the fea-

ibility domain are described by positive linear combinations of the

 vectors given by the negative of each of the S columns of the in-

eraction matrix (see Appendix A for further details). 

This definition implies that the feasibility domain, D F ( A ), of an

nteraction matrix A can be geometrically represented as an al-

ebraic cone (see Fig. 1 a for a graphical illustration). An alge-

raic cone in R 

S is defined as the space spanned by positive lin-

ar combinations of S linearly independent vectors. This cone is

lso referred in the mathematical literature as a simplicial cone

 Ribando, 2006 ). For brevity, we will refer to it simply as a cone .

herefore, v i can be defined as the i th spanning vector of the fea-

ible cone. This geometric property confirms, as we mentioned

efore, that the shape and size of the feasibility domain can be

ystematically investigated using convex geometry and probability

heory ( Ball, 1997; Brondsted, 2012; Logofet, 1993 ). 

. Probabilistic interpretation of feasibility 

The definitions above allow us to quantify the size of the fea-

ibility domain under LV dynamics by the solid angle of the cone

enerated by the interaction matrix A (see Fig. 1 b for a graphical

llustration). By normalizing the solid angle such that it is equal

o one for the whole unit sphere in R 

S , the normalized solid an-

le �( A ) is equal to the probability of sampling uniformly a vector

f intrinsic growth rates on the unit sphere inside the feasibility

omain. That is, the normalized solid angle is the proportion of

he feasible parameter space inside the unit sphere. Formally, the

ormalized solid angle �( A ) can be defined by the ratio of the fol-

owing volumes: 

( A ) = 

vol (D F ( A ) ∩ B 

S ) 

vol (B 

S ) 
, (5) 

here B 

S is the closed unit ball in dimension S ( Gourion and

eeger, 2010; Saavedra et al., 2016a ). Note that the least upper

ound of �( A ) is 0.5, as the largest cone that can be generated by
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Fig. 1. Visualization of the feasibility domain and its normalized solid angle . For a fictitious community of three species represented by an interaction matrix A with 

all negative entries, the figures correspond to the parameter space of intrinsic growth rates ( r = [ r 1 , r 2 , r 3 ] 
T ). In Panel a , the green cone represents the feasibility domain 

D F ( A ) generated by the negative column vectors (spanning vectors) of the interaction matrix A (see Eq. (3) ). The arrow corresponds to a hypothetical vector of intrinsic 

growth rates inside the feasibility domain. In Panel b , the blue unit sphere corresponds to the normalized parameter space. The normalized solid angle of the feasible cone 

�( A ) corresponds to the fraction of the volume in the unit sphere occupied by the cone (green region), which can be interpreted as tolerance of a community to random 

environmental perturbations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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an interaction matrix is exactly given by the half of the parame-

ter space (see Appendix B for the mathematical derivation). There-

fore, the closer �( A ) is to 0.5, the larger the likelihood of randomly

sampling a feasible community for a given interaction matrix A . 

Analytically, �( A ) can be calculated by the cumulative function

of a multivariate Gaussian distribution ( Ribando, 2006; Saavedra

et al., 2016b ): 

�( A ) = 

1 

(2 π) S/ 2 
√ | det ( A ) | 

∫ 
· · ·

∫ 
N ∗≥0 

e −
1 
2 N 

∗T A T A N ∗
d N 

∗, (6)

This normalized solid angle �( A ) can be efficiently computed via

a quasi-Monte Carlo method for even relatively large communities

( Genz and Bretz, 2002; Saavedra et al., 2016b ). The code in R to

compute this probability is archived on GitHub. Note that there ex-

ists a close analytic formula to compute the expectation of �( A )

for independent and identically distributed (i.i.d.) random matrices

A , i.e., where each element of these matrices is drawn indepen-

dently from the same statistical distribution ( Grilli et al., 2017 ). 

Another important probabilistic interpretation of the feasibility

domain can be derived by calculating the average probability ω( A )

that a randomly chosen species i from a given community is fea-

sible (i.e., N 

∗
i 

> 0 ). Assuming that this choice is i.i.d. for all species,

which can be valid when the coupling of interactions is not too

strong in the community ( Sugihara et al., 2012 ), we compute ω( A )

as ω( A ) = �( A ) 1 /S . Indeed, the product of the average probability

ω( A ) across all species in the community has to equal the size of

the feasibility domain of the whole community, i.e., ω( A ) S = �( A ) .

In other words, ω( A ) translates the probabilistic interpretation of

feasibility from the community to the species level. 

In the hypothetical case where all species in a community

do not interact (i.e., the interaction matrix becomes A = H =
diag { h 1 , . . . , h S } < 0 ), we have ω( H ) = 0 . 5 . Indeed, for the whole

community to be feasible there must be r i > 0 for all species.

Therefore, the size of the feasibility domain is given by the strictly

positive part of the parameter space, i.e., D F ( H ) = R 

S 
> 0 

, which has

the normalized solid angle of �( H ) = 0 . 5 S . This is equivalent to say

that the probability that any of the species in the community has

positive abundance at equilibrium is the probability of its intrin-
ic growth rate being positive (assuming that positive and negative

alues are equally possible). Thus, the more ω( A ) departs from the

enchmark of 0.5, the larger the relevance of a nontrivial interac-

ion matrix A to the feasibility of species. 

. Changes of species interactions and feasibility 

In line with the majority of feasibility studies, so far we have

ssumed that species interactions do not change, i.e., there is only

ne interaction matrix A . Yet, ecological communities are dynamic

nd permanently changing ( Grant and Grant, 2014; Saavedra et al.,

016a; 2016b ). Thus, the challenge is to integrate the informa-

ion given by changes of species interactions under a systematic

nalysis of the feasibility domain ( Cenci et al., 2018; Saavedra

t al., 2017a ). For instance, consider the case of a community that

witches between two patterns of interactions characterized by the

nteraction matrices A and B . Then, one can estimate the combined

( A ∪ B ) or shared �( A ∩ B ) normalized solid angles, i.e., the range

f conditions for which the community is feasible by switching

ack and forth or under both matrices simultaneously. For this pur-

ose, we can compute the union and the intersection of the feasi-

ility domains of the matrices A and B . Following the geometric

epresentation of the feasibility domain, these can be written as:

�( A ∪ B ) ︸ ︷︷ ︸ 
ombined feasibility 

= �( A ) + �( B ) − �( A ∩ B ) , ︸ ︷︷ ︸ 
shared feasibility 

(7)

here �( A ∪ B ) = vol ((D F ( A ) ∪ D F ( B )) ∩ B 

S ) / vol (B 

S ) and �( A ∩
 ) = vol ((D F ( A ) ∩ D F ( B )) ∩ B 

S ) / vol (B 

S ) . 

The intersection of the two feasibility domains D F ( A ) and D F ( B )

an be algebraically formalized as the linear combination 

∑ 

N 

∗
i 
v i 

f the spanning vectors of A , where N 

∗
i 

satisfies 

 

 

 

 

 

S ∑ 

i =1 

N 

∗
i v i = 

S ∑ 

i =1 

μi w i 

N 

∗
i , μi ≥0 , i = 1 , . . . , S, 

(8)
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Fig. 2. Visualization of the combined and shared normalized solid angles generated by two feasibility cones . Panel a shows the combined space generated by two 

feasibility cones ( D F ( A ) and D F ( B )) representing two different interaction matrices A and B formed by a fictitious community of three species. Panel b shows the geometric 

projection of the two feasibility cones. The combined, normalized, solid angle (area described by the dashed lines) is computed by the sum of the two relative volumes 

generated by the feasibility cones minus the relative volume generated by the intersection (overlap) between the cones. This intersection is shown by the dark region. Since 

the intersection of two polyhedrons can be triangulated ( Hatcher, 2002 ), to find the overlap between the cones we have to locate the extreme points that generated the 

intersection. These are of two types: one type belongs to the original extreme points of each polyhedron (blue points), the other type belongs to the intersection of the 

edges of two polyhedrons (red points). See Appendix D for further details. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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nd v 1 , . . . , v S and w 1 , . . . , w S are the spanning vectors of the cones

 F ( A ) and D F ( B ), respectively (see Eq. (3) ). Then, we need to ap-

ly the triangulation of the intersected region into several cones

o that the intersected volume can be computed by adding the

olume of each cone together through Eq. (6) . See Fig. 2 for an

llustration of this triangulation. The proof of the computational

ethod and the code in R to compute �( A ∩ B ) and �( A ∪ B ) is

rchived on GitHub. As before, we can translate both the com-

ined and the shared normalized solid angles from the commu-

ity to the species level by defining ω( A ∪ B ) = �( A ∪ B ) 1 /S and

( A ∩ B ) = �( A ∩ B ) 1 /S , respectively. 

. Constraints on trophic energy flows and feasibility 

Similarly, in line with the majority of feasibility studies, so

ar we have assumed that there are no constraints acting on en-

rgy flows across trophic levels modulating the values that the

ntrinsic growth rates can possibly take. Although this is a valid

athematical approach, these assumptions make little biologi-

al sense for many multi-trophic communities ( Svirezhev and Lo-

ofet, 1983 ). In fact, numerous works have already introduced con-

traints on trophic energy flows in population dynamics models

 Borrvall et al., 20 0 0; Otto et al., 2007; Rossberg, 2013; Yodzis and

nnes, 1992 ). For example, constraints on trophic energy flows in

 food web can be translated into positive and negative intrin-

ic growth rates for basal and higher trophic levels, respectively

 Rossberg, 2013 )—i.e., a plant takes energy from the sun, but a lion

annot survive without prey. In this section, we will explain how to

ystematically incorporate these constraints into the study of fea-

ibility. While our focus is on linear constraints, our methods can

lso be expanded to nonlinear constraints (see Appendix E). 

In general, the effect of constraints can be formalized by: 

c ( A ∩ Constraints ) = 

vol (D F ( A ) ∩ Constraints ∩ B 

S ) 

vol (B 

S ∩ Constraints ) 
. (9)

his general definition implies that constraints can either increase

r decrease the size of the feasibility domain of a community, de-

ending on how the constraints intersect the feasibility domain

f the interaction matrix and the closed unit ball. Note that con-

m

traints decrease both the volume in the numerator and that in

he denominator; however, the decrease can be larger either in the

umerator or denominator. Focusing on linear constraints, here we

tudy linear inequalities and linear equalities ( Bertsimas and Tsit-

iklis, 1997 ). Linear inequalities allow us to take into account, for

xample, the sign constraints of intrinsic growth rates of species

n the computation of the feasibility domain for a multi-trophic

ommunity. Linear equalities can allow us to incorporate, for ex-

mple, as a first-order approximation, the correlations among in-

rinsic growth rates, such that species with similar constraints (or

etabolic rates) could be constrained to have similar values (i.e.,

llometric relationships). 

Formally, the most simple kind of linear inequalities in the in-

rinsic growth rates of a species i can be written as 

 i ≤ r i ≤ U i , (10) 

here L i and U i are the lower and upper bounds, respectively. Note

hat L i and U i do not depend on the intrinsic growth rates, nor

n the properties of other species. They only depend on species

 . Ecologically, this means that the intrinsic growth rates of some

pecies are bounded. Importantly, these local constraints on indi-

idual species can introduce global constraints on the abundances

f all species. Formally, we can write the constraints on the equi-

ibrium species abundances N 

∗ based on Eqs. (2) and (10) in the

orm of 

 i ≤
S ∑ 

j=1 

a i j N 

∗
j ≤ U i i = 1 , . . . , S, (11)

here a ij are the elements of the interaction matrix A . These con-

traints shrink the feasibility cone to a bounded polytope of a con-

ex subset of the original cone ( Ball, 1997 ). See Fig. 3 for a graphi-

al illustration. 

Similarly, linear equalities can be formally introduced by as-

uming that two species i and j have exactly the same intrinsic

rowth rate. This constraint can be written explicitly as 

S ∑ 

 =1 

a im 

N 

∗
m 

= 

S ∑ 

m =1 

a jm 

N 

∗
m 

. (12)
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Fig. 3. Visualization of the feasibility domain with constraints imposed on energy flows across trophic levels . For a fictitious community of three species, the figures 

correspond to the parameter space of intrinsic growth rates ( r = [ r 1 , r 2 , r 3 ] 
T ). The green cones represent the feasibility cones generated by the column vectors of the inter- 

action matrix negation ( −A ) with linear constraints on intrinsic growth rates. Panel a shows the linear inequalities r 3 ≥ r 2 , and r 1 , r 2 , r 3 ≥ 0 (represented by the gray area), 

which shrinks the feasibility cone and unit sphere. Panel b shows the constrained, normalized, solid angle that this constrained feasibility cone generates. Panel c shows the 

linear equality r 2 = r 3 on the feasibility cone (represented by the gray area), which projects the 3-dimensional cone into a 2-dimensional one. Similarly, Panel d shows the 

constrained, normalized, solid angle that this constrained feasibility cone generates. 
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A direct consequence of this constraint is that the dimension of

the sampling space is reduced by one dimension. See Fig. 3 for a

graphical illustration. 

Linear constraints are strongly connected to linear program-

ming ( Bertsimas and Tsitsiklis, 1997 ), which can be integrated into

the calculation of the constrained, normalized, solid angle �c ( A ).

Note that both the feasibility cone and the entire parameter space

are reduced to the region of intrinsic growth rates dictated by the

given linear constraints (see Fig. 3 for a graphical illustration). The

code in R to introduce different linear constraints and compute

�c ( A ) is archived on GitHub. Note that there exists a close ana-

lytic formula to compute the expectation of �c ( A ) for i.i.d. random

matrices with constraints imposed on the abundances of species

( Grilli et al., 2017 ). Similarly, the constrained, normalized, solid an-

gle can be better represented by the constrained probability of fea-

sibility of a species: ω c ( A ) = �c ( A ) 1 /S . 

7. Illustrative example 

To illustrate the application of our quantitative tools, we cal-

culated the simple ω( A ), combined ω( A ∪ B ), shared ω( A ∩ B ), and
onstrained ω c ( A ) normalized solid angles at the species level of a

imple 3-level trophic chain characterized by one basal, one con-

umer, and one top-predator species (see Fig. 4 for a graphical il-

ustration). The elements a ij of A for this trophic chain were ran-

omly drawn from a normal distribution N (0, 1), but the signs of

he interactions were established according to the expected intake

f food or energy (predator–prey interactions shown in Fig. 4 ).

ll species were assumed to be self-regulated (i.e., a ii = −1 ). To

alculate the combined and shared, normalized, solid angles of a

ypothetical change of species interactions, we introduced small

roportional random perturbations to the original matrix A . These

hanges generated the new matrix B . To calculate the constrained,

ormalized, solid angle we introduced sign constraints to the in-

rinsic growth rates of the basal (allowing only positive values) and

redator species (allowing only negative values), following trophic

nergy constraints ( Logofet, 1993; Rossberg, 2013 ). Fig. 4 summa-

izes the results of our example. Overall, the figure clearly shows

hat the relative size of the feasibility domain of ecological com-

unities can significantly change depending on the biological in-

ormation taken into consideration. 
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Fig. 4. Illustrative example of how the size of the feasibility domain changes as a function of adding biological information. The figure shows the simple ω( A ), 

combined ω( A ∪ B ), shared ω( A ∩ B ), and constrained ω c ( A ) normalized solid angles at the species level of a 3-level trophic community characterized by one basal, one 

consumer, and one top predator species. Panel a depicts a cartoon of this trophic chain. Each blue symbol corresponds to a species, whose intrinsic growth rate (shown 

inside the symbol) is constrained according to its position in the trophic chain. These species are linked by arrows showing the standard energy flow in the trophic chain. 

Panel b shows the different average probabilities of feasibility for a randomly chosen species in the trophic chain (normalized solid angles) that can be computed based on 

the biological information taken into account. See text for details on how the matrix, interaction changes, and constraints are generated. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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. Conclusions 

In this article, we have provided a basic quantitative guideline

o help carry out a systematic analysis of the size of the feasi-

ility domain for multi-trophic and changing ecological communi-

ies. While numerous and important work has been devoted to the

nalysis of feasible communities, there is still a central and urgent

ap to fill regarding how to integrate feasibility analysis with addi-

ional biological information into a rigorous methodological frame-

ork. Typically, the majority of work on feasibility assumed ei-

her no structure of species interactions, a static view of communi-

ies, or that energy flows can happen equally across trophic levels.

owever, this may violate central biological principles depending

n the developmental stage of a community ( Odum, 1969 ). Thus,

t becomes essential to have tools that can allow us to explore the

xtent to which all of this information is necessary for a better

nderstanding about the conditions leading to feasible ecological

ommunities, and the limits at which communities may no longer

olerate environmental perturbations ( Cenci et al., 2017 ). In this di-

ection, our tools have shown that, by integrating these biological

roperties, the size of the feasibility domain of ecological commu-

ities can drastically change. Moreover, constraints on trophic en-

rgy flows can significantly increase the feasibility domain, which

ay provide a potential explanation for the prevalence of such

onfigurations. Yet, more work on this area needs to be done be-

ore reaching any final conclusions. 

As potential new directions derived from our guideline, first

e would like to stress how important is the probabilistic in-

erpretation of our measures. Since communities are perma-

ently changing and it is extremely difficult to field parameter-

ze a population dynamics model involving more than 2 species

 Vandermeer, 1975 ), the concept of how likely different parameter-

zations lead to a feasible community can be mapped back onto

ow likely a community of species can coexist under given and
hanging environmental conditions. Of course, feasibility is only

 necessary, but not a sufficient condition for species coexistence

 Hofbauer and Sigmund, 1998 ), which implies that other dynamical

roperties that could grant this sufficiency when found along with

easibility (such as dynamical stability) should be explored under a

imilar framework ( Arnoldi and Haegeman, 2016; Song and Saave-

ra, 2018 ). We also believe that species-based metrics of feasibility,

uch as the rescaled volume of the feasible domain ω( A ), can pro-

ide a more intuitive interpretation of the community feasibility,

specially when comparing communities of different dimensions. 

In particular, we encourage the investigation of potential trade-

ffs involved during changes in species interactions by moving

ommunities from unfeasible to feasible regions and vice versa.

or instance, as we have seen in Fig. 4 , changes of species inter-

ctions can increase the feasibility of a community, as expressed

y the combined feasibility between interaction matrices A and B .

owever, these changes could require a very different set of in-

rinsic growth rates to which species might even not be able to

dapt. This can be captured by the fraction ω( A ∩ B )/ ω( A ), where

he higher the value, the larger the range of intrinsic growth rates

hared between the feasibility cones D F ( A ) and D F ( B ). Thus, it

ight not always be possible for a community to increase both its

ombined and shared, normalized, solid angles at the same time,

uggesting a trade-off between feasibility and adaptability. Future

tudies could investigate this type of trade-offs during the devel-

pment and reorganization of ecological communities. 

Similarly, introducing constraints on trophic energy flows can

elp us to infer parameterizations, to identify missing or improb-

ble interspecific interactions, or to study the effect of parameter

orrelations on the feasibility of ecological communities. Moreover,

hese constraints can help us to shift the focus from the struc-

ure of species interactions to the structure of the parameter space,

hich appears to be a necessary step towards a better understand-

ng of species persistence ( Saavedra et al., 2017b ). Overall, we envi-



36 C. Song et al. / Journal of Theoretical Biology 450 (2018) 30–36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

G  

G  

G  

 

H
H  

L  

L  

M  

 

O
O  

 

P
 

 

R  

R  

 

 

 

R
 

S  

 

S  

 

S  

 

S  

 

 

S  

 

S  

 

 

T  

 

Y  
sion that tools like the ones presented in this guideline can open a

new and prosperous dialogue for a stronger synthesis of theoretical

and empirical work on multi-trophic and changing communities. 
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A Definition of feasibility domain

Here, we briefly present the formal definitions associated with the feasibility domain.

Definition 1 (Feasibility Domain). The feasibility domain for a non-singular interaction matrix

A is defined as the parameter space of intrinsic growth rates that leads to a feasible (positive)

equilibrium, i.e., the set of r such that −A−1r > 0.

Definition 2 (Cone). A cone in RS is defined as a space spanned by positive linear combinations

of S linearly independent vectors.

Remark 1. This is also referred as a simplicial cone (Ribando, 2006). For simplicity, we will

call it cone. However, it is important to note that this is not the common definition of cone

(James, 1992).

Definition 3 (Spanning Vector). The vector vi is defined as the ith spanning vector of the

feasibility domain if vi is the negation of the ith column of A.

Remark 2. A spanning vector is sometimes referred to as an extreme ray in convex geometry

(Bertsimas & Tsitsiklis, 1997).

With the above definitions, the feasibility domain of A is proved to be (Svirezhev & Logofet,

1983)

DF (A) = {r = N∗1v1 + · · ·+N∗SvS , with N∗1 > 0, . . . , N∗n > 0} , (A1)

where vi is the negation of the ith column of A.

Remark 3. This definition is the reason why we restrict the parameters, in the definition of

cone, to be strictly greater than 0, instead of the standard definition where the boundary is also

included.

Remark 4. The non-singularity condition det(A) 6= 0 is equivalent to the situations where

(v1, ...,vS) are linearly independent. The non-singular interaction matrix A gives a one-to-one

linear mapping from the feasibility domain to the space of positive equilibrium of species abun-

dances. Mathematically, these two spaces are equivalent. However, the geometric representation

and the clear link to the interaction matrix makes this transformation useful for feasibility analysis

(Saavedra et al., 2017b).
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B Least upper bound of the relative volume

Here, we prove a basic property of the normalized solid angle Ω(A) (defined in eqn. 5).

Theorem 1. Least upper bound of Ω(A) is 1
2 .

Proof. First we prove that 1
2 is an upper bound for Ω(A), then we prove that this upper bound

is a limit point.

The relative volume is generated by the positive linear combinations of S linearly independent

vectors v1, ...,vS . The end-points of those vectors form a hyperplane that does not pass through

the origin because of the assumption of linear independence. Let us consider the hyperplane that

passes through the origin and is parallel to the hyperplane formed by the end-points of our S

vectors. By construction, all the end-points are on the same side of the hyperplane. Because

the normalized solid angle of the whole side of a hyperplane is 1
2 , it is proved that 1

2 is an upper

bound of Ω(A).

Then we prove that 1
2 is a limit point. Let us construct the following set of S vectors:

v1 =


1
0
...
0

 ,v2 =


0
1
...
0

 , · · · , and vS =


−1
−1
...
δ

 .

For δ > 0, those S vectors are linearly independent and generate a cone of a normalized solid

angle Ω(A) < 1
2 . By taking the limitδ → 0+, the normalized solid angle Ω(A)→ 1

2 . This proves

that 1
2 is a least upper bound of Ω(A).
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C Computation of the relative volume

Here, we discuss the computation of the normalized solid angle Ω(A). In the main text (Eqn. (6)),

we have presented an analytic formula. In fact, Ribando (2006) proved a closed form to compute

the normalized solid angle Ω(A) (Theorem 2.2. in (Ribando, 2006)). However, this formula

is computationally expensive in high dimension, and an exact solution is not actually needed.

Thus, we use a quasi-Monte Carlo method to efficiently compute the relative volume following

Genz & Bretz (2002); Saavedra et al. (2016b). One important computational consideration is the

numerical error of (ATA)−1, which is a quantity required for the computation of the normalized

solid angle. For instance, the tolerance level of the function solve in R is too low for high

dimensions. In order to correct for these numerical errors, we encourage to use the function

chol2inv in R, or any other function incorporating the QR decomposition to compute the inverse

of the matrix (Trefethen & Bau III, 1997).
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D Intersection of feasibility cones

Here, we turn our attention to the overlap (intersection) of two (or more) feasibility cones cor-

responding to two (or more) interaction matrices of the same dimension. Without loss of gen-

erality, we will focus on two cones. To calculate this overlap, one can think about the problem

of computing the probability of the intersection of two events U1 and U2, namely Ω(U1 ∩ U2).

This intersection is needed to calculate the combined Ω(A ∪ B) and shared Ω(A ∩ B) normal-

ized solid angles between two (or more) feasibility cones DF (A) and DF (B) (see main text):

Ω(A ∪B) = Ω(A) + Ω(B)− Ω(A ∩B).

The overlap of two feasibility cones is not a trivial problem in computation. However, using

convex geometry, we can translate the overlap problem into an affine space of the cones problem

(Leichtweiß, 1999). That is, we can take the advantage of the fundamental fact that any spanning

vector starting from the origin is uniquely determined by any point on it except for its initial

point. Importantly, this guarantees that any feasibility cone can be compressed without loss of

information into its intersection with a hyperplane (polyhedron), which can be chosen arbitrarily

as long as the intersection is not empty.

Therefore, we can study the geometric properties corresponding to the overlap between two S-

dimensional cones simply by choosing a hyperplane that intersects both feasibility cones when

the overlap is nonempty, and then investigate the overlap of two polyhedrons on the (S −
1)-dimensional hyperplane. Because the intersection of two polyhedrons can be triangulated

(Hatcher, 2002), all we have to do (if the overlap is a non-empty set) is to locate the extreme

points that generated the intersection. This is the key observation that simplifies the compu-

tation of the overlap between two feasibility cones. That is, the intersection is generated by

two types of points: one type belongs to the original extreme points of each polyhedron, and

the other type belongs to the intersection of the edges of two polyhedrons. Note that the affine

transformation only preserves the relative position rather than the relative volume of a geometric

object (Kostrikin, 1982), the volume of intersection cannot be simply calculated as the absolute

volume of the intersection over the volume of the two polyhedrons on the hyperplane. Below, we

provide the full derivation.

The overlap is mathematically defined as Eqn. (8) in the main text. It may not be a cone, and

the following theorem describes its shape.

Theorem 2. The overlap of two feasibility cones is a union of cone(s), or an empty set.

Proof. An empty overlap is obviously possible. We discuss the case when the overlap is not

empty. Let us denote two feasibility cones as DF (A) and DF (B), respectively.

First, we prove that the overlap is a polyhedron with only extreme rays. Suppose
∑S

i=1 aivi

is inside the overlap, then for any positive λ > 0, λ
∑S

i=1 aivi is inside the overlap, too. Also,

the overlap of two cones is still a polyhedron. Thus, by the resolution theorem (Bertsimas &

Tsitsiklis, 1997), there exist extreme rays v1, ..,vN such that the overlap is equivalent to

{
N∑
i=1

λivi|λ1, ..., λN > 0}. (D1)
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Second, we prove that N = S if the borders of the two cones do not intersect. From the view of

the parameter space, DF (A) separates the Euclidean space into three disjoint sets: C1 = {λ|λi <
0,∃i} (outside the cone), C2 = {λ|λi = 0,∃i} (the borders of the cone), C3 = {λ|λi > 0,∀i}
(inside the cone). If the feasibility cone DF (B) intersects with both C1 and C3 of DF (A), then

by continuity, DF (B) also intersects with C2 of DF (A). Since the overlap is assumed to be

non-empty, DF (B) must be contained in either C1 or C3 of DF (A). In both cases, N = S.

Finally, we prove that N ≥ S if the borders of the two simplexes intersect. If N < S, then the

overlap is null (Stein & Shakarchi, 2009). Since the borders intersect, the border of a cone is

not in the cone. Then by the assumption of non-emptiness, there must exist one point x0 inside

the overlap. Because this point is in the interior of DF (A), there exists a εA > 0 such that

the neighborhood {x | |x − x0| < εA} of x0 is inside DF (A). Similarly, there exists an εB > 0

such that the neighborhood {x | |x− x0| < εB} of x0 is inside DF (B). Thus, the neighborhood

{x | |x − x0| < min{εA, εB}} of x0 is in the overlap whose measure is nonzero, which leads to a

contradiction. Thus, N ≥ S if the overlap is not empty. The set of N vectors can be ∪Ui, where

the cardinality of each Ui is S, and any element in Ui is not in the interior of the polyhedron

spanned by Uj , ∀j 6= i. This can easily be proved by mathematical induction.

The problem left now is to compute the extreme rays. We reformulate it by transforming it into

an equivalent problem.

Definition 4 (Characteristic Simplex of a Cone). A characteristic simplex of a cone is defined

as the interior of the convex set whose extreme points are located on the spanning vectors. See

Fig. D1 for an illustration.

Corollary 1. The characteristic simplex of a feasibility cone is an (S − 1)-dimensional simplex.

Proof. Let us denote the intersection points as vi, i = 1, ..., S. Then, the simplex is equivalent

to

{r =
S∑

i=1

λivi ∈ Rn|∃λ1, .., λS > 0,
S∑

i=1

λi = 1}. (D2)

Since we only consider non-degenerate cases, vi are linearly independent. Thus, it satisfies the

standard definition of a simplex.

Remark 5. The border is included in the standard definition of a simplex, while the definition

of a characteristic simplex excludes the border.

Definition 5 (Associated Polyhedron). The associated polyhedron of a feasibility cone is defined

as the polyhedron whose extreme points are the origin point and the spanning vectors (taken as

points). The associated face of the polyhedron corresponds to the face spanned by the spanning

vectors of the original cone.

Theorem 3. The spanning vectors of the intersection of two feasibility cones are extreme points

of the overlap of the corresponding characteristic simplexes.

Proof. Let us denote the two feasibility cones as DF (A) and DF (B), and the interaction matrices

as A,B. Also, denote the intersection with the associated face of A as FA, and with B as FB.

The overlap of DF (A) and DF (B) can be written as

{r|A−1r, B−1r ∈ (R−)S}. (D3)
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The overlap of FA and FB can be written as

{r|A−1r, B−1r ∈ (−1, 0)S}. (D4)

where (−1, 0)S is the Cartesian product.

The intersection of the overlap and the associated face of any cone is equivalent to the overlap.

By uniqueness of extreme points and extreme rays in convex geometry, the proof is complete.

Remark 6. By convex geometry, the overlap of FA and FB can be uniquely determined by its

extreme points, and the overlap of DF (A) and DF (B) can be uniquely determined by its extreme

rays (spanning vectors). Thus, this theorem proves the equivalence of these two definitions via

construction.

The vertexes of the simplex and the intersection points of simplexes are candidates as extreme

points of the overlap.

Theorem 4. The extreme points of the overlap of characteristic simplexes are the extreme points

of the joint of the set of all vertexes of one simplex in another simplex’s closure. This closure

has the set of the intersection points of the edges of one simplex with borders of another simplex.

Proof. We consider the closure of the overlap. This is only for mathematical simplicity due to the

fact that an extreme point is equivalent to a basic feasible solution under this setup (Bertsimas

& Tsitsiklis, 1997). All vertexes of the simplexes are basic solutions, thus, it is an extreme point

if and only if it is feasible.

All extreme points must be in the intersection of the borders of the simplexes. Let us consider a

face which has a subset that is in the border of the overlap. We show that any extreme point x0

of the overlap that is in this face must be on some edge of another simplex. Otherwise, x0 must

be in the interior of some face F2 of another simplex. Thus, FA transverse FB is restricted to the

overlap part of F1 and F2 (Guillemin & Pollack, 2010), which in turn gives that x0 is not in the

border of the overlap part. See Fig. D2 for a visualization of this geometric idea.

In general, to enumerate all vertexes of a polyhedron is difficult (Khachiyan et al., 2008). No

algorithm in polynomial time has been found for solving the general case (Murty, 2009). For a

particular case, the total number of vertexes might be exponential by the constraints. Due to the

geometric essence of the problem, the maximum number of extreme points grows only squarely

with the dimension.

Definition 6 (Notations). For a set of vectors v1, ...,vN , expression (v1, .., v̄i, ...,vN ) denotes

the space spanned by all vectors but vi. For a set A , Ā denotes the closure of A , and A o

denotes the interior of A .

Theorem 5. The maximum number of the spanning vectors of the intersection of two feasibility

cones is S(S − 1).

Proof. We first prove that any edge of DF (A) will not intersect with more than interiors of

two faces of DF (C). Suppose that an edge has passed three faces of DF (B). Without loss of

generality, let us suppose the middle one is on the face spanned by (v̄1, ..,vS−1,vS), and the

other two are on the face spanned by (v1, ..,vS−1, v̄S) and (v1, .., v̄S−1, vS), respectively. Then,

there exists k1, k2 > 0, such that

k1λ1 + k2λ2 = 0, (D5)
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where λ1, λ2 are the positive coefficients of v1 in the two border points. This is in fact not

possible.

Thus, there are no more than S − 1 extreme points on each face. In total, there can be no more

than 2S(S − 1) on all faces of two simplexes. If an extreme point is on the interior of some face,

then it is counted at least twice; if an extreme point is on the interior of some edge, then it is

counted at least S − 1 times; if an extreme point is on some vertex, then it is counted at least S

times. Thus, there can be no more than S(S − 1) different extreme points.

The positioning of the simplexes that gives the highest number of extreme points can be con-

structed: for each face of DF (A), there are S−1 vertexes of DF (B) on the side of the face where

the vertex of DF (A) that does not belong to this face, and only one vertex of DF (B) on the

other side. In this case, the number of extreme points is (S − 1)S. Thus, the upper bound is

tight.

By theorem 2, 3, and 5, the non-empty overlap of the original feasibility cones has at most S(S−1)

spanning vectors and at least S spanning vectors. Now the problem is reduced to separate the

overlap of cones into several disjoint cones.

Definition 7 (Border set). A subset of spanning vectors with S elements is defined as a border

set if all spanning vectors that are not in this subset are on one side of the space spanned by this

subset.

Theorem 6. Let us suppose a set of N vectors where any S elements are linearly independent.

The problem is to partition this set into ∪Ui, where by cardinality of each Ui is S, and any

element in Ui is not in the interior of the polyhedron spanned by Uj ,∀j 6= i. Each Ui is defined

as a partitioning set. The computational complexity of this problem is in polynomial time.

Proof. The simplexes referred following are characteristic simplexes. This approach is justified

by theorem 3.

We first prove that the total number of these partitioning sets is N − S + 1. This is because

each of the two cones whose corresponding characteristic simplexes share a face have S1 spanning

vectors in common. Note that two different characteristic simplexes cannot share two faces. This

is because two faces involve all the spanning vectors, which uniquely determine a partitioning

set. The characteristic simplex of any cone must share at least one face with another simplex.

Note that the points in one border set must be on the same face of some simplex. See Fig. D3

for a visualization of this geometric idea.

Following Ribando (2006) and Theorem 6, the problem of computing analytically the overlap is

solved.

Remark 7. Our results show that the overlap of two arbitrary cones can be analytically computed

as there is a closed form (Ribando, 2006). Note that our results do not contradict the classical

result: that computing the precise volume of the polyhedron in high dimension is an #P -complete

problem (Khachiyan, 1989; Dyer & Frieze, 1988).

Clearly, the methodology above can be applied to the intersection of multiple feasibility cones.

All the code in R will be archived on Github.
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r1
r2

r3

Figure D1: Characteristic Cones. The nonempty intersections of the feasibility cone with any
hyperplane are equivalent up to affine transformation.
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Figure D2: Intersection of Cones. This transforms the original problem into an equivalent
question, the extreme points of the intersection of two S − 1 closed simplex.
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a b

Figure D3: Triangulating the plane. Panel (a) shows the shape of the intersection; note that
the volume of this region has no direct relationship with the volume of the original overlap. Panel
(b) shows the triangulation of the intersection simplex.
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E Constraints on intrinsic growth rates

In the majority of feasibility studies, it is assumed that there are no constraints acting on energy

flows across trophic levels, i.e., the intrinsic growth rates of different species are independent

and can have any possible value. We focus on linear constraints to provide a starting point for

addressing this problem, where an analytic description of constraints can be incorporated.

There are two types of linear constraints: linear inequalities and linear equalities. Although

they are equivalent by introducing auxiliary variables in the sense of mathematics (Bertsimas &

Tsitsiklis, 1997), they have different meanings in ecology. First we focus on linear inequalities.

The general form of constraints (lower and upper bounds) on one species i is:

Li ≤ ri ≤ Ui. (E1)

The most simple example is that the sign of intrinsic growth rates can be fixed (Logofet, 1993);

for instance, a given predator and prey may have negative and positive intrinsic growth rates,

respectively. Biologically speaking, a finite Li and Ui exist for any i ∈ {1, ..., S}. Thus, we always

have the following constraints on equilibrium abundances:

Li ≤
S∑
l=1

vl
iλl ≤ Ui , i = 1, .., S; (E2)

λi > 0 , i = 1, ..., S, (E3)

where vl
i stands for the i-th component of the spanning vector corresponding to species l.

Note that these constraints are in essence different from the overlap of feasibility cones. The

feasibility cone is shrinked to a bounded polytope. There is no restraint on its shape (Ball, 1997)

except that it is a convex subset of the original feasibility cone. In particular, this cone might be

an empty set, which is also another indication of why the structure of intrinsic growth rates is so

important. Besides the inequality constraints on one species, it is also common to see equality

constraints on the relationship of several species, as metabolic rates may also be similar among

species.

With regard to linear equalities, we check the most simple case first. Suppose two species i, j

have exactly the same growth rates. This constraint can be written explicitly as

S∑
l=1

λlv
l
i =

S∑
l=1

λlv
l
j . (E4)

By denoting δv = (v1i − v1j , ..., vSi − vSj ) and λ = (λ1, ..., λS), this constraint can be equivalently

written as

δv · λ = 0. (E5)

Although this constraint seems to be local, it turns out that it introduces a global relation-

ship among abundances of all species. A direct consequence of the constraint (E5) is that the

dimension of the sampling space is reduced by 1.

All the reasoning above can be easily generalized to different types of constraints. Consider a

constraint
∑

k∈T akrk = 0 where ak 6= 0 and T is a subset of {1, ..., S} whose cardinality is strictly
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greater than 1. It would generically pose one linear constraint on λ, which is the cardinality of

T . Note that there are only S components of λ, thus generically there cannot be more than S

constraints. This is a very important distinction from inequalities.

The computation of a general polyhedra (constraints) in high dimension can be done through a

Markov chain Monte Carlo method (Dyer et al., 1991; Jerrum & Sinclair, 1996). It is important

to note that the it is time-consuming in high dimension. In the main text, we have focused on the

relative volume of the feasible region as it has a natural probabilistic interpretation. However, in

many cases, the interests might be on the optimization of some functions of species abundances

(Goh, 2012). Because most of convex nonlinear constraints can be efficiently computed (Boyd

& Vandenberghe, 2004), this kind of problem can be solved via setting the species growth rates

as undetermined parameters. Of course, the optimization of any linear function whose variables

are species abundances can be easily computed (Bertsimas & Tsitsiklis, 1997). All the code in R

will be archived on Github.
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