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Abstract. Although observations of species-rich communities have long served as a pri-
mary motivation for research on the coexistence of competitors, the majority of our empirical
and theoretical understanding comes from two-species systems. How much of the coexistence
observed in species-rich communities results from indirect effects among competitors that only
emerge in diverse systems remains poorly understood. Resolving this issue requires simple,
scalable, and intuitive metrics for quantifying the conditions for coexistence in multispecies
systems, and how these conditions differ from those expected based solely on pairwise interac-
tions. To achieve these aims, we develop a structural approach for studying the set of parame-
ter values compatible with n-species coexistence given the geometric constraints imposed by
the matrix of competition coefficients. We derive novel mathematical metrics analogous to
stabilizing niche differences and fitness differences that measure the range of conditions com-
patible with multispecies coexistence, incorporating the effects of indirect interactions emerg-
ing in diverse systems. We show how our measures can be used to quantify the extent to which
the conditions for coexistence in multispecies systems differ from those that allow pairwise
coexistence, and apply the method to a field system of annual plants. We conclude by present-
ing new challenges and empirical opportunities emerging from our structural metrics of multi-
species coexistence.

Key words: community dynamics; feasibility; invasion criterion; multiple competitors; niche and fitness
differences; pairwise effects; structural stability.

INTRODUCTION

The impressive diversity of species in ecological com-
munities has long motivated ecologists to explore how
this diversity is maintained (Darwin 1859, Hutchinson
1961). Given that some species are better competitors
than others, and that competitive imbalances should
lead to the exclusion of inferiors, the factors enabling
the coexistence of so many species pose an ecological
puzzle. Although observations of species-rich communi-
ties have served as a primary motivation for research on
coexistence (Hutchinson 1961, Hubbell 2001), the
majority of our empirical and theoretical understanding
of this topic comes from the study of pairwise mecha-
nisms (Case 2000, Chesson 2000, Kraft et al. 2015). The
reason is one of practicality—experiments and theory
devoted to understanding the interaction of two species
are simpler and more tractable than efforts to under-
stand the dynamics of many species (Case 2000).

Nonetheless, the focus on pairwise coexistence misses
some process that only emerge in diverse systems of
competitors and may ultimately maintain coexistence in
diverse ecosystems in nature (Billick and Case 1994).
Theory shows that embedding pairwise competitive

interactions into a network of other (still pairwise) com-
petitive interactions causes species to have indirect effects
on one another via changes in the abundance of other
species in the community (Vandermeer 1970, 1975, Levine
1976, Wootton 1993, Spiesman and Inouye 2015). These
“interaction chains” can reverse pairwise competitive out-
comes and strongly affect conditions for coexistence. For
example, “rock-paper-scissors” intransitive competition
can favor the coexistence of three species, even though
each pair cannot coexist in isolation (May and Leonard
1975, Kerr et al. 2002, Godoy et al. 2017b). With a differ-
ent set of interactions, conditions for coexistence may be
constrained by the more complex network of interactions
in diverse communities (May 1971, Roberts 1974, Svirez-
hev and Logofet 1983, Stone 1988). Although advancing
our understanding of coexistence in systems with many
competitors remains a priority for studies of species diver-
sity maintenance (Logofet 2005, Edwards and Schreiber
2010, Allesina and Levine 2011, Saavedra et al. 2014,
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Barab�as et al. 2016), tools for dissecting how coexistence
emerges from population dynamics in higher dimensional
systems are only beginning to be developed.
To understand how the structure of diverse competi-

tive networks influences the maintenance of species
diversity, ecologists require metrics that both character-
ize the opportunities for coexistence in n-species systems
and quantify how much of this coexistence depends on
mechanisms that require more than two species. The
approach most commonly applied to understanding
coexistence in diverse communities is local stability anal-
ysis (May 1972, Logofet 1993, Case 2000). Though
related to concepts of stability across the natural
sciences, local stability has some central limitations.
First, local stability may consider a system stable when
not all the constituent species from the community
attain positive abundances at equilibrium. This means
the system is stable but not feasible (Roberts 1974, Rohr
et al. 2014). Second, the degree to which species coexis-
tence depends on mechanisms that require more than
two species cannot be readily calculated from the local
stability properties of the n-species equilibrium. Finally
and most fundamentally, in local stability analysis the
perturbations act on state variables, limiting the analysis
to changes in species abundances only. These perturba-
tions may not represent realistic scenarios of changes in
species abundances and demographics. Therefore,
opportunities for coexistence may be more intuitively
and directly evaluated by measuring the robustness of
coexistence to both large and small changes in the demo-
graphic rates and interactions of the competitors (i.e.,
the parameters of population dynamics models).
To address these issues above, one can study coexis-

tence from a mutual invasibility perspective, where spe-
cies’ invasion growth rates can be decomposed into
stabilizing niche differences that increase the conditions
for coexistence and average fitness differences that drive
competitive exclusion (Chesson 2000, Adler et al. 2007).
Because coexistence requires each of the two competi-
tors to have a positive growth rate when rare, the stabi-
lizing niche difference can be regarded as a metric of the
opportunity for coexistence (i.e., how large a fitness dif-
ference can be tolerated). Under Modern Coexistence
Theory (MCT; Chesson 2000), niche differences include
all processes that cause intra-specific interactions to be
more limiting than interspecific interactions, and thereby
benefit species that drop to low relative abundance. Fit-
ness differences include all factors that favor one com-
petitor over the other, and can arise for example from
species differences in their innate demographic potential
or tolerance of competition (e.g., species differences in
their R* sensu Tilman [1982]).
Unfortunately, this two species framework based on

invasion growth rates is not easily extended to include
mechanisms that only emerge with more than two spe-
cies. More formally, the invasion criterion can only be
used to evaluate n-species coexistence when depressing
each species to low abundance allows the remaining

n � 1 species to coexist (see Appendix S1). Consider, for
example, the coexistence of three species via rock-paper-
scissors competition. Depressing any one species to low
density leads to the elimination of one of the residents.
The fact that each species can invade a system with one
resident is insufficient to conclude that all three species
can coexist (Barab�as et al. 2016). Past efforts have
extended the two species coexistence framework by
quantifying the determinants of population growth rate
when invading a system with multiple resident species
(Chesson 2003). This advance has proven useful for
understanding how functional trade-offs (Angert 2009),
seed pathogens and predators (Chesson and Kuang
2010, Stump and Chesson 2015), and bioclimatic factors
(Holt and Chesson 2014) influence community-level
metrics of niche differentiation (see also Carroll et al.
2011). Nonetheless, by building from invasion growth
rates and/or averaging over the pairwise niche and fit-
ness differences, these approaches do not readily reveal
the contribution of higher dimensional mechanisms to
coexistence. In sum, the current set of tools for evaluat-
ing species coexistence in diverse communities are not
well suited for differentiating the effects of pairwise
mechanisms from those emerging due to the indirect
effects among a diverse set of competitors.
In this manuscript, we propose that quantifying the

opportunities for coexistence in diverse systems requires
moving from mutual invasibility to structural appro-
aches. Recognizing the value of the coexistence metrics
developed for two species systems, we develop structural
measures analogous to niche differences that quantify
opportunities for coexistence in systems of n-competing
species. The new measures we propose are based on a
structural stability approach previously used to under-
stand the persistence of ecological networks (Rohr et al.
2014, Saavedra et al. 2014, 2016a, b). Developing multi-
dimensional metrics is important because ecologists ulti-
mately aim to understand the coexistence of many
species, not just pairs of competitors. Moreover, the
structural metrics we develop allow ecologists to both
visualize and quantify the contribution to coexistence of
interaction chains that only emerge in systems with more
than two species. Though we acknowledge that in spe-
cies-rich systems each species’ per capita effect on
another can be modified by the presence of a third spe-
cies (higher order interactions; Billick and Case 1994),
this paper will only explore coexistence in competitive
systems with species interactions that are fundamentally
pairwise. Doing so facilitates quantitative analysis, and
also permits the closest connection between our metrics
and empirical approaches designed to readily quantify
pairwise interactions.
In the first half of the paper, we provide background

on the concept and mathematical conditions for species
coexistence as achieved through traditional approaches
and compare these to the structural approach developed
here. We show how structurally derived measures map
onto the stabilizing niche difference and average fitness
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difference developed algebraically for systems of two
competing species, and then demonstrate how they can
be extended to n-species communities. In the second half
of the paper, we use our structural measures to develop
an approach for quantifying the contribution to coexis-
tence of indirect interactions that only emerge with more
than two competitors. We then quantify the contribution
of indirect effects to coexistence of three- and four-
species assemblages of annual plant species occurring in
California. We conclude by presenting the empirical and
theoretical challenges and opportunities emerging from
a structural approach.

SPECIES COEXISTENCE IN SIMPLE MODELS

To study species coexistence, first we require a dynam-
ical system describing the change in species abundances
through time. The simplest competitive system (but still
incorporating the basic elements of a competitive
dynamic) for which we have the most analytic results is
the Lotka-Volterra model (Volterra 1931, Lotka 1932,
Case 2000)

dNi=dt ¼ Ni ri �
Xn
j¼1

aijNj

 !

where the variable Ni denotes the abundance (or bio-
mass, depending on the chosen dimension) of species i;
and the parameters ri > 0 and aijP0 represent the intrin-
sic growth rate of species i and the competitive effect of
species j on species i, respectively. Note that the term
inside the parenthesis ri �

PS
j¼1 aijNj

� �
is called the per

capita growth rate of species i. Importantly, this simple
dynamical system can exhibit various complex behav-
iors: a unique globally stable equilibrium point, multiple
locally stable equilibrium, or even limit cycles (Hofbauer
and Sigmund 1998, Case 2000).
Analyses of the Lotka-Volterra population dynamics

model have analytically demonstrated that a necessary
condition for species coexistence (see Appendix S2 for
further details) is the existence of a feasible equilibrium
point (Hofbauer and Sigmund 1998). An equilibrium
point N�

i is called feasible when the abundance of each
species is positive (N�

i [ 0). If such a feasible equilib-
rium point exists, it has to be the solution of the follow-
ing set of i linear equations (with one equation for each
species i):

ri ¼
XS
j¼1

aijN�
j :

These equations make explicit that one needs a partic-
ular combination of species demographic parameters (ri)
and interspecific interactions (aij) to have a positive solu-
tion and provide the necessary conditions for species
coexistence.

However, feasibility is necessary but not sufficient to
guarantee species coexistence in n-species systems. For
example, in the textbook case of two competing species
(Hofbauer and Sigmund 1998, Case 2000), the equilib-
rium point may be feasible but unstable, and thus one of
the competitors will go extinct. While the stability of a
feasible equilibrium point is not required for coexistence
in higher dimensional systems (Hofbauer and Sigmund
1998), it has been shown that the global stability of a
feasible equilibrium point is a sufficient condition for
species coexistence (persistence; Svirezhev and Logofet
1983, Logofet 1993, 2005, Rohr et al. 2014, Saavedra
et al. 2016a, b). Therefore, species coexistence can be
studied by looking into the necessary conditions for spe-
cies permanence (that is feasibility) and the necessary
and sufficient conditions (that is feasibility and global
stability) for species persistence (Takeuchi 1996,
Hofbauer and Sigmund 1998, Rohr et al. 2014). Unfor-
tunately, in many cases, global stability is very difficult
to prove (Logofet 1993), and one may only rely on the
necessary conditions for species coexistence.

TRADITIONAL ALGEBRAIC APPROACH FOR EVALUATING

TWO-SPECIES COEXISTENCE

To illustrate how species coexistence has traditionally
been approached by theory, let us assume that the popu-
lation dynamics of two competing species can be
described by the Lotka-Volterra model, i.e.,

dN1
dt ¼ N1 r1 � a11N1 � a12N2ð Þ
dN2
dt ¼ N2 r2 � a21N1 � a22N2ð Þ

(
: (1)

Then, if one is interested in the sufficient conditions
for coexistence, one needs to find whether there exists a
feasible equilibrium point (N�

1 [ 0, N�
2 [ 0) and if it is

globally stable (see Appendix S3 for a review of global
stability).
Traditionally, to find these feasibility and stability

conditions, one can draw the non-trivial isoclines, i.e., the
two lines defined by r1 - a11N1 - a12N2 = 0 and
r2 - a21N1 - a22N2 = 0 (see Fig. 1A for a graphical exam-
ple). A feasible equilibrium point exists if the two isoclines
cross at a positive abundance, and this equilibrium point is
globally stable under the condition a11a22 > a12a21
(Case 2000). The solution of this dynamical system is
given by N�

1 ¼ ða22r1 � a12r2Þ=ða11a22 � a12a21Þ and
N�

2 ¼ ð�a21r1 þ a11r2Þ=ða11a22 � a12a21Þ. Because the
denominator of these two expressions is assumed to be
positive, the feasibility conditions can be written as

a22r1 � a12r2 [ 0
�a21r1 þ a11r2 [ 0

�
: (2)

These two inequalities can be combined into one
equation (given that all parameters are strictly positive)
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a11
a21

[
r1
r2

[
a12
a22

(3)

which gives the upper and lower bounds within which
the relationship of intrinsic growth rates need to fall to
allow the feasibility of the system (i.e., a positive solution
of the system).
Under the MCT framework (Chesson 2000), one

derives niche and fitness difference metrics from the
mutual invasion criterion (rather than the intersecting
isocline analysis above, see Appendix S1). Importantly,
these metrics for the Lotka Volterra model can also be
produced by multiplying each term of Eq. 2 byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22a21=a11a12

p
. This multiplier describes the ratio of

species’ sensitivities to competition. This results in the
inequalities between niche overlap and the fitness differ-
ence, given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22
a12a21

r
|fflfflfflfflffl{zfflfflfflfflffl}

ðNiche overlapÞ�1

[
r1
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a22a21
a11a12

r
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Fitness difference

[
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a12a21
a11a22

r
|fflfflfflfflffl{zfflfflfflfflffl}

Niche overlap

ð4Þ

By assuming that the niche overlap is less than one,
i.e., a12a21 < a11a22, the global stability of the equilib-
rium point in a two-species Lotka-Volterra competition
model is guaranteed (Case 2000).
In this framework, two competing species will coexist

if the stabilizing effect of their niche difference (1 – niche
overlap) exceeds their average fitness difference (Fig. 2)

(Chesson 1990, 2000, 2012). The greater the stabilizing
niche difference (or the smaller the niche overlap), the
greater the opportunity for coexistence. Stabilizing niche
differences emerge from functional differences between
species that cause intra-specific limitation to exceed
interspecific limitation, as may arise, for example, from
species differences in phenology, habitat specialization,
or interactions with specialist consumers (Levine and
HilleRisLambers 2009, Carroll et al. 2011, Kraft et al.
2015). The average fitness difference is a measure of
average competitive ability reflecting species differences
in their demographic potential and sensitivity to compe-
tition. In the absence of stabilizing niche differences,
the species with the higher average fitness excludes the
fitness inferior.

A STRUCTURAL APPROACH FOR SPECIES COEXISTENCE

As shown in the prior section, the classic algebraic
approach for finding the conditions for both feasibility
and global stability of a two-competitor system is
straightforward. However, this approach becomes diffi-
cult if not impossible for n species (Svirezhev and Logo-
fet 1983, Logofet 1993, 2005, Takeuchi 1996). In Box 1,
we illustrate how extending this algebraic approach to
study the feasibility conditions of more than two species
gets into a circularity problem with no solution. More-
over, as noted in the introduction, the mutual invasion
criterion, an alternative approach to evaluating coexis-
tence, does not work with more than two species when

1st isocline: r1 = α11N1+α12N2 

2nd isocline: r2 = α21N1+α22N2 
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FIG. 1. Algebraic and structural representation of two-species coexistence. Panel A shows the classic algebraic approach of assess-
ing whether two competing species coexist by looking at the non-trivial isoclines. Panel B depicts the structure or parameter space
(feasibility domain) leading to species coexistence, given a matrix of competition coefficients. The feasibility domain is given by the
area between the two green lines, and it is defined by the range of intrinsic growth rates under which the two isoclines cross at positive
abundances (in Panel A). To ensure coexistence (provided that the stability condition is satisfied, see Appendix S3), the intrinsic growth
rates (represented by the brown vectors) have to fall inside the two green lines. [Color figure can be viewed at wileyonlinelibrary.com]
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the depression of one competitor to low density leads to
the loss of residents (see Appendix S1). Thus, with
traditional approaches, ecologists have limited tools to
evaluate the conditions for feasibility and stability in

n-species systems. To address this challenge, we suggest
to shift from an algebraic to a structural approach
(Vandermeer 1970, Svirezhev and Logofet 1983, Logofet
1993). Importantly, this structural approach allows ecol-
ogists to evaluate the contribution of indirect effects
emerging in multispecies systems to coexistence in
diverse communities.
The structural approach involves the study of how the

qualitative behavior (e.g., species coexistence as defined
by globally stable and feasible solutions) of a dynamical
system depends on the parameters of the system itself
(Thom 1972). Nonetheless, as we detail below, this
approach parallels developments in coexistence theory
aiming to characterize coexistence as a function of
stabilizing niche and fitness differences. Thus, the
approach is conceptually aligned with how ecologists
have been approaching the problem of the coexistence of
two species.
Contrary to the algebraic approach where it is neces-

sary to solve the system of linear equations to derive the
inequalities leading to feasibility (N�

1 [ 0 and N�
2 [ 0),

the structural approach directly evaluates the set of
intrinsic growth rates (r1 and r2) leading to feasibility
given by the geometric constraints imposed through the
matrix of competition coefficients a. The elements of
this matrix correspond to the change in the per capita
growth rate of species i under a small change in the den-
sity of species j. The matrix a defines then the stability
constraints and the range of conditions (parameter val-
ues) compatible with feasible solutions (see Appendix S3

Box 1: Algebraic approaches to feasibility cannot be extended to more than two species.

One might attempt to extend the two-species isocline approach to evaluate feasible equilibria in systems of
n competing species. However, the inequalities derived for two species do not exist for three or more species.
That is, first one would have to solve the linear equations defining the feasible equilibrium point

N�
1 ¼ 1

detðaÞ ða22a33 � a23a32Þr1 þ ða13a32 � a33a12Þr2 þ ða12a23 � a22a13Þr3ð Þ
N�

2 ¼ 1
detðaÞ ða23a31 � a33a21Þr1 þ ða11a33 � a13a31Þr2 þ ða13a21 � a23a11Þr3ð Þ

N�
3 ¼ 1

detðaÞ ða21a32 � a31a22Þr1 þ ða12a31 � a32a11Þr2 þ ða11a22 � a12a21Þr3ð Þ

8><
>:

which is basically the inverse of the matrix a multiplied by the vector of intrinsic growth rates r. Then the
feasibility constraints would result in the following three inequalities:

ða22a33 � a23a32Þr1 þ ða13a32 � a33a12Þr2 þ ða12a23 � a22a13Þr3 [ 0
ða23a31 � a33a21Þr1 þ ða11a33 � a13a31Þr2 þ ða13a21 � a23a11Þr3 [ 0
ða21a32 � a31a22Þr1 þ ða12a31 � a32a11Þr2 þ ða11a22 � a12a21Þr3 [ 0

8<
: :

These inequalities would have to assume that det (a) > 0, which is a necessary condition for global stability.
At the point at which one would try to combine these inequalities, we would enter into a circularity problem
without any way to solve it. For example, let us take the two first inequalities and let us derive and upper and
lower bound between which the ratio r1/r2 has to fall to provide a positive solution to the system. Inevitably,
these upper and lower bounds will be a function of the intrinsic growth rate of the third species (r3). The
same schema repeats with species 2 and 3, and with species 3 and 1, in a circular way. Therefore, we cannot
derive simple inequalities defining the feasibility of n species, such as those given in two-species systems.
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FIG. 2. Modern coexistence theory for two-species coexis-
tence. This figure illustrates how the niche and fitness difference
define the domain of coexistence of pairs of species. It is derived
from Eq. 4 and assuming, without loss of generality, that
r1 > r2. [Color figure can be viewed at wileyonlinelibrary.com]
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for a review about stability conditions). That is, changes
in the matrix of competition coefficients correspond to
changes in the range of stability and feasibility condi-
tions. This approach has been used to estimate the maxi-
mum number of coexisting species (Bastolla et al. 2005,
2009), or how the conditions of feasibility (assuming
explicitly global stability) are modulated by species inter-
action networks (Rohr et al. 2014, Saavedra et al.
2016a, b).
Focusing on the feasibility conditions in the structural

approach, given a fixed matrix of competition coeffi-
cients (a), the set of intrinsic growth rates leading to a
feasible equilibrium point is the so-called feasibility
domain DF(a). Following a Lotka-Volterra model, this
domain can be mathematically written as

DFðaÞ ¼ r ¼ r1
r2

� �
2 R2, such that a�1r[ 0

)
:

(
(5)

Note that the expression a-1r > 0 corresponds to the
condition for an equilibrium point to be feasible (posi-
tive solution, N* > 0), that is when the two non-trivial
isoclines cross at a positive abundance for both species.
The elements of the feasibility domain can be written as
positive linear combinations of the competitive inter-
action strengths a, i.e,

DFðaÞ ¼
�

r1
r2

� �
¼N�

1

a11
a21

� �
þN�

2

a12
a22

� �
;

with N�
1 [ 0 and N�

2 [ 0
	
:

(6)

Geometrically, the feasibility domain is described by
the set of elements between the lines defined by the two
column-vectors a11 a21½ � and a12 a22½ �. These two
lines have a slope of a21/a11 and a22/a12, respectively.
Fig. 1B provides an illustration of the feasibility domain,
and shows that this domain is structurally described by a
cone. Note that the inequalities derived under an alge-
braic approach define the exact same domain. Indeed, a
vector of intrinsic growth rates will fall inside the feasi-
bility domain, if and only if its slope given by r2/r1 is,
respectively, larger and smaller than the slope of the line
defining the bottom border of the feasibility cone
(r2/r1 > a12/a11) and the slope of the line defining the top
border of the feasibility cone (r2/r1 < a22/a12), which is
equivalent to the inequalities of Eq. 2.
It is worth noting that the feasibility domain is defined

in the same way for any dynamical model for which the
feasible equilibrium point can be described by a linear
equation, i.e., r = aN*. The Lotka-Volterra model is the
classical example of such a model, but a large class of
competition models can be described in this way, includ-
ing models with saturating effects of each additional
competitor, the discrete time Lotka-Volterra model, and
even the seed banking annual plant competition model.

In the next sections, we illustrate our structural
approach with the Lotka-Volterra model. However, in
Appendix S4 we summarize models to which our struc-
tural framework can be applied; explain how the feasi-
bility domain can be computed; and show how the
stability constraints of a feasible equilibrium can be
studied. Note that for the majority of population mod-
els, the strongest condition of stability that one can
derive is local asymptotic stability. However, this does
not preclude us from applying the structural framework
to find the necessary conditions for species coexistence
(feasible solutions) in different models. The conditions
for stability then remain under the scope and limits of
the research question.

CONDITIONS FORCOEXISTENCE IN A TWO-SPECIES SYSTEM

Here we show how one can derive structural measures
that parallel algebraic metrics of niche and fitness differ-
ences for understanding pairwise coexistence. The struc-
tural analog of the niche difference, what we call Ω,
corresponds to the normalized solid angle of the cone
describing the feasibility domain. This normalization is
done such that when the cone of feasibility covers the
entire set of positive growth rates (the entire quadrant
shown in Fig. 2A), the solid angle equals one (Ω = 1).
Note that the absolute magnitude of the growth rates
does not change the angle. This gives a probabilistic
interpretation to the structural analog of the niche dif-
ference, i.e., it corresponds to the fraction of positive
intrinsic growth rate vectors leading to feasible solutions
when sampling uniformly with a fixed norm (e.g., the
vector shown in Fig. 2A) (Svirezhev and Logofet 1983,
Logofet 1993, Saavedra et al. 2016a). The structural
analog of the fitness difference, what we called h, corre-
sponds to the extent to which the vector of intrinsic
growth rates (r) deviates from the centroid of the domain
of feasibility. This deviation is computed by the angle
between the centroid of the feasibility domain, what we
called rc, and the actually observed vector of intrinsic
growth rates. Thus, the centroid of the feasibility domain
corresponds on average to the best set of intrinsic growth
rate values that can tolerate small random changes
without pushing any of the species to extinction
(Rohr et al. 2014, 2016, Saavedra et al. 2014). Fig. 3A
shows a graphical representation of the structural
analogs of the niche and fitness differences for two
species.
Mathematically, the normalized solid angle (Ω) is

computed as follows:

XðaÞ ¼ 2
p
arcsin

a11a22 � a12a21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 þ a221

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a212 þ a222

q
0
B@

1
CA (7)

and the centroid of the feasibility domain is defined by
the following vector:
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rc ¼ 1
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 þ a221

q a11
a21

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a212 þ a222

q a12
a22

� �0
B@

1
CA: (8)

Similarly, analogous to the fitness difference, the devi-
ation (measured in degree) between a given vector of
intrinsic growth rates r (i.e., that observed in nature),
and that which maximizes the likelihood of a feasible
solution rc is computed based on the scalar product of
the two vectors

h ¼ arccos
r � rc

krk � krck

 �

: (9)

Therefore, following a structural approach, the feasi-
bility conditions of two competing species will be ful-
filled when the vector defining the intrinsic growth rates
of species falls inside the feasibility domain, i.e., when
the structural analog of the fitness difference (h) is small
enough relative to the structural analog of the niche dif-
ference (Ω). Specifically, these feasibility conditions will
be guaranteed as long as h < 45 � Ω (taking h as degree).
Fig. 3B illustrates this inequality, which is qualitatively
in line with Modern Coexistence Theory’s notions
(Chesson 2000) of niche and fitness differences for

species coexistence. In general, the figure shows that the
higher the structural analog of the niche difference (Ω),
the higher the tolerated structural analog of the fitness
difference (h) leading to feasible solutions. Note that in
this two-species case, the global stability conditions only
depend on the matrix of competition coefficients a and
are fulfilled when a12a21 < a11a22.

EXTENSION TO MULTISPECIES COEXISTENCE

The power of the structural approach is that it is read-
ily extended to n species, and thereby includes and quan-
tifies the contribution to coexistence of the indirect
interactions that emerge in systems of three or more
competitors. To do so, as in the two-species case, we
need to study the set of intrinsic growth rates compatible
with the feasibility of equilibrium points of the system
given by a matrix of competition coefficients a. The two-
species deasibility domain (Eq. 5) can easily be extended
to n-species. As in the two-species case, we assume that
the feasible equilibrium of the dynamical system is the
solution of a linear system (r = aN*). This framework
can be extended to other population models, such as the
seed banking annual plant model (see Appendix S4).
The feasibility domain for an n-species community, can
be written as
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FIG. 3. Structural analogs of the niche and fitness differences defining two-species coexistence. Panel A shows the structural
analogs of the niche difference (Ω) and fitness difference (h) for an arbitrary matrix of competition coefficients a fulfilling global
stability conditions (see Appendix S3). The green lines define the border of the feasibility domain. The normalized solid angle Ω
between these two green lines corresponds to the structural analog of the niche difference. The brown vector (r) corresponds to a
given set of intrinsic growth rates, the dashed orange line corresponds to the centroid of the cone (rc), and the angle (measured in
degree) between the centroid and the vector of intrinsic growth rates corresponds to the structural analog of the fitness difference.
Panel B corresponds to the analysis of two-species coexistence following the structural approach. The bottom green region corre-
sponds to the area of coexistence. [Color figure can be viewed at wileyonlinelibrary.com]
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DFðaÞ ¼ r 2 Rn
[ 0, such that a�1r[ 0

� 

: (10)

Writing the elements of the interaction strength matrix
a into column vectors, we obtain

a ¼
a11 � � � a1n
..
. . .

. ..
.

an1 � � � ann

2
64

3
75 ¼

..

. ..
. ..

.

v1 v2 vn
..
. ..

. ..
.

2
664

3
775 (11)

and the elements of the feasibility domain are explicitly
given by all the positive linear combinations of these col-
umn vectors. Thus, the feasibility domain can be rewrit-
ten in the form

DFðaÞ ¼
�
r ¼ N�

1v1 þN�
2v2 þ � � � þN�

nvn;

with N�
1 [ 0;N�

2 [ 0; ;N�
n [ 0



:

(12)

This domain is the conical hull made by the positive
combinations of the vectors v1, v2, . . ., vn forming the col-
umns of the matrix of competition coefficients a. Geo-
metrically, such a domain is called an algebraic cone. In
Fig. 4, this algebraic cone is represented by the volume
formed by the column vectors of a given matrix of compe-
tition coefficients a (green lines). Therefore, the structural

analogs of the niche and fitness differences for n-species
coexistence can be calculated in a similar fashion as in the
two-species case. The structural analog of the niche differ-
ence (Ω) corresponds to the normalized solid angle of the
cone describing the feasibility domain. As for two species,
the normalization is done such that in the absence of
interspecific competition (aij = 0 for all species i 6¼ j) the
structural analog of niche difference is equal to one.
The structural analog of the fitness difference (h) cor-

responds to the angle between the vector of intrinsic
growth rates r and the centroid of the cone defining the
feasibility domain (rc). Feasible solutions will be granted
as long as the vector of growth rates is inside the cone
defining the domain of feasibility. As in the two-species
case, the structural analog of the niche difference Ω in
the general n-species case gives the probability of feasible
solutions. Note that in n-dimensional systems, the struc-
tural analog of fitness difference is inherently a commu-
nity-level measure, while in MCT it is a pairwise
measure even when averaged over multiple invader–resi-
dent pairings. See Discussion and Appendix S5 for a
detailed comparison between the structural approach
and MCT).
The mathematical expressions of these quantities are

the following:

XðaÞ ¼ j detðaÞj
n
ffiffiffiffiffiffiffiffi
p=2

p Z
� � �
Z
Rn

� 0

e�xTaTaxdx: (13)

rc ¼ 1
n

v1
kv1k þ

v2
kv2k þ � � � þ vn

kvnk

 �

(14)

h ¼ arccos
r � rc

krk � krck

 �

: (15)

The mathematical derivation, as well as the numerical
evaluation, of the structural analog of niche difference Ω
are provided in Appendix S6. Note that Svirezhev and
Logofet (1983) have already developed a similar formula
to compute the normalized solid angle of the feasibility
domain for competition systems (see also Saavedra et al.
2016a). Their formula estimated the proportion of the
feasibility domain intersecting the unit simplex, and can
be interpreted as a normalized solid angle in what is
called the topology L1. Note that a unit simplex is the
generalization of a triangle with unit area to n dimen-
sions. The R code for computing the structural niche
and fitness difference is provided on Dryad (Saavedra
et al. 2017).
It is worth recalling that the feasibility condition, in

and of itself, is a necessary but insufficient condition for
persistence or permanence and therefore coexistence (see
Appendix S2). Assuming the feasibility conditions are
satisfied, the global stability of the feasible equilibrium
point is a sufficient condition of coexistence. In dimen-
sion 2, the global stability condition is trivial (Case
2000), but it may become very difficult in dimension n.
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FIG. 4. Illustration of the structural approach for multi-
species coexistence. For an arbitrary positive-definite matrix of
competition coefficients a with three competing species, the fig-
ure illustrates the structural analogs of the niche Ω and fitness
differences h. The coordinates in the figure correspond to the
parameter space of intrinsic growth rates. The structural analog
of the niche difference is the solid angle (Ω) of algebraic cone of
feasibility, under which the community can sustain stable and
feasible solutions. This cone is delimited by the column vectors
of the matrix of competition coefficients a. The structural ana-
log of the fitness difference corresponds to the angle (h) between
any observed vector of intrinsic growth rates r (brown solid vec-
tor) and the centroid of the feasibility domain rc (dashed line).
[Color figure can be viewed at wileyonlinelibrary.com]
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These types of conditions have been intensively investi-
gated for linear and non-linear Lotka-Volterra models
(Svirezhev and Logofet 1983, Logofet 1993, 2005,
Takeuchi 1996). We summarized these stability condi-
tions in Appendix S3 and then we explain how they can
be applied to several population dynamical models in
Appendix S4.
As mentioned above, the feasibility domain is geomet-

rically represented by a cone. To simplify this geometric
representation, we can draw one of its sections by pro-
jecting it on the unit simplex (Svirezhev and Logofet
1983, Logofet 1993). For instance, in the two-species
case this projection is given by a line (Fig. 5A). The gray
line represents the full domain of the parameter space of
intrinsic growth rates, but normalized such that their
sum is equal to one (projection on the unit simplex).
Each ending of the gray line represents the case where
only one species has an intrinsic growth rate of 1. In
turn, the green line represents the projection of the cone
defining the feasibility domain on the unit simplex. The
two green dots and the orange dot correspond to the
two green lines and the orange line of Fig. 3A, respec-
tively. Therefore, they define the borders and the cen-
troid of the feasibility domain on the geometric
projection, respectively.
This geometric projection on the unit simplex can be,

in a similar way, extended to n species. Fig. 5B and C
provide an illustration for the case of three and four spe-
cies. In the case of three species, the unit simplex is repre-
sented by the gray triangle and the feasibility domain is
represented by the inner green triangle. For four species,
the unit simplex is represented by a pyramid (gray) with
triangular faces, and the feasibility domain by an inner
green pyramid. In these two cases, as in the two-species
case, the green dots represent the extreme borders of the
feasibility domain, and the orange dot corresponds to

the centroid. The R code for reproducing the figures is
provided on Dryad (Saavedra et al. 2017)

DISENTANGLING THE SOURCES OF COEXISTENCE

As mentioned in the introduction, one of longest-
standing questions in community ecology concerns the
importance for coexistence of indirect interactions that
emerge when pairwise interactions are embedded into a
network of competitors (Yodzis 1988, Wootton 1993,
Billick and Case 1994). A central challenge has been dif-
ferentiating the effects of pairwise interactions from
those emerging from the indirect effects generated in the
population dynamics of multispecies systems. While the
indirect effects of competitors, as emerge in rock-paper-
scissors competitive dynamics, have been studied under
a game theoretical approach (Kerr et al. 2002, Allesina
and Levine 2011) and partly determine the stability
properties of the community matrix (Case 1990), it has
remained unclear how to embed these population
dynamics into metrics that show their influence on the
potential for coexistence, such as the stabilizing niche
difference.
Our basic approach for evaluating the contribution of

interaction chains to coexistence (i.e, how much of the
conditions for community coexistence is due to indirect
competitive effects vs. pairwise niche differences)
involves two steps. First, the structural approach is used
to calculate the feasibility domain of a community, what
we denoted by DF. Note that this feasibility domain is
the region of intrinsic growth rates compatible with the
coexistence of n species as defined by the matrix of com-
petition coefficients. Second, the structural approach is
used to identify the region of intrinsic growth rates com-
patible with the coexistence of each pair of species, what
we denote by Dij. In turn, the intersection of all the

FIG. 5. Geometric projection of the cone defining the feasibility domain. For arbitrary, positive-definite, interaction strength
matrices a, Panels A–C illustrate the geometric projection of the feasibility domain on the unit simplex for two, three, and four spe-
cies, respectively. These projections give an easier geometric representation of the feasibility domain. The unit simplex is defined by
the set of all positive intrinsic growth rates that sum to one. In each panel, each of the extremes on the line corresponds to the case
where one species has an intrinsic growth rate of 1 and the others have an intrinsic growth rate of zero. In the middle of each line,
the two corresponding species have the same intrinsic growth rate of 0.5. In the two-species case, this geometric projection corre-
sponds to a line, in the three-species case corresponds to a triangle, and in the four-species case corresponds to a pyramid. [Color
figure can be viewed at wileyonlinelibrary.com]
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pairwise feasibility domains corresponds to the region of
intrinsic growth rates compatible with the coexistence of
all pairs, what we denote by Dall = D12 ∩ D13 ∩ . . .
∩ D1S ∩ . . . ∩ DS�1,S, but not necessarily the same as
the simultaneous coexistence of all competitors DF.
We illustrate this approach for the coexistence of three

species based on an arbitrary and globally stable three-
species competition system given by the positive definite
matrix

a ¼
1 0:4 0:3
0:5 1 0:6
0:05 0:5 1

2
4

3
5 in Fig. 6:

The feasibility domain for the pair formed by species 1
and 2 (D12) is represented by the green inner triangle
(Fig. 6A). This feasibility domain corresponds to the set
of vectors of growth rates over which species 1 and 2 will
coexist assuming species 3 is absent. Away from the

bottom axis of the simplex, species 3 has positive growth
and is therefore present in the system. However, in these
projections of purely pairwise coexistence, the ratio of the
growth rates of species 1 and 2 compatible with their
coexistence is independent of the effects of species 3.
Hence, with increasingly greater growth of species 3
(moving upward in Fig. 6A), a green triangle is drawn
that retains the ratio of species 1 and 2’s growth rates
compatible with their coexistence. This pairwise feasibility
domain can then be illustrated for all three species pairs,
as in Fig. 6B. The intersection of the three green inner tri-
angles (the darkest green area) gives the domain of coex-
istence for all pairs (Dall), i.e., each pair of species can
coexist in the absence of the third species. Importantly
however, and consistent with predictions from algebraic
approaches (e.g., Case 1990), the intersection of the three
pairwise feasibility domains does not properly predict the
conditions for three-species coexistence (see Fig. 6C).
The different set of growth rates compatible with the

FIG. 6. Community vs. pairwise effects on coexistence. Panel A depicts the feasibility domain of the pair formed by species 1
and 2 (D12). If one chooses a vector of intrinsic growth rates inside the green triangle, then in absence of species 3, species 1 and 2
will coexist. Panel B shows the three domains of feasibility for each pair of species (Dij). Note that if one chooses a vector of intrinsic
growth rates at the intersection of these three domains, then any pair of species will coexist in the absence of the third species (Dall).
Panel C shows the domain of feasibility of the three species together (DF). Panel D shows the overlap between the domain of feasi-
bility of the triplet (DF) with the pairwise domains (Dall). This is depicted by scenario (i). It can also be seen that pairwise coexis-
tence does not automatically imply triplet coexistence (ii), and vice versa (iii).The difference between these two domains is indicative
of the importance of indirect interactions for multispecies coexistence. [Color figure can be viewed at wileyonlinelibrary.com]
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coexistence of all pairs (Dall) vs. the coexistence of the tri-
plet (DF) is visualized by overlaying the two feasibility
domains (see Fig. 6D).
Our example (Fig. 6D) identifies three regions of com-

munity dynamics with a different match between pair-
wise coexistence (Dall) and the full community
coexistence (DF): (i) all pairs show coexistence as does
the triplet (the region of overlap, Dall ∩ DF 6¼ ∅); (ii) all
pairs show coexistence but not the triplet (the region of
Dall not overlapping with DF); (iii) not all pairs show
coexistence but the triplet does (the region of DF not
overlapping with Dall). Importantly, these cases illustrate
the varying effects that indirect effects among competi-
tors can have on coexistence. These indirect effects can
create conditions for coexistence that do not otherwise
occur with purely pairwise mechanisms (as in iii), they
can constrain coexistence (as in ii), or they can have no
effect on the qualitative outcome of competition (as in i).
The example in Fig. 6, where the feasibility domain

for the full community (DF) is only partially the same as
that predicted by the intersection of pairwise coexistence
(Dall) proves to be just one of three general cases. The
first general case is that in which the n-species feasibility
domain may lie entirely within the feasibility domain
predicted by the coexistence of all pairs (Fig. 7A), as
occurs with the globally stable matrix defined by interac-
tion coefficients

a ¼
1 0:4 0:5
0:5 1 0:6
0:4 0:5 1

2
4

3
5:

In this case, the indirect interactions emerging in the
three-species system contract the conditions for coexis-
tence relative to that predicted by pairwise mechanisms

alone. For instance, if the set of intrinsic growth rates is
located anywhere inside the dark region (e.g., orange
point), species in all the three pairs and the triplet will
coexist.
The second general case is that shown in Fig. 7B (the

same network is shown in Fig. 6), where there is partial
overlap between the feasibility domain of the entire com-
munity and that of pairwise coexistence. Importantly,
even though the two feasibility domains are of roughly
comparable area, the indirect interactions in this case
cause three species coexistence to require different com-
petitor growth rates than the coexistence of all pairs. For
instance, if the set of intrinsic growth rates is located at
the orange point (inside the region of overlap), the spe-
cies in all the pairs and the triplet will coexist. However,
if the set of intrinsic growth rates is located at the red
point (outside the region of overlap), then we can
observe triplet coexistence but not the coexistence of the
pair formed by species 2 and 3.
The third general case is that in which there is no over-

lap between the feasibility domain of the entire commu-
nity and that of pairwise coexistence. This is exemplified
by Fig. 7C, where the interaction coefficients

a ¼
1 1:5 0:1
0:1 1 0:6
1:6 0:5 1

2
4

3
5

produce a rock-paper-scissors competitive loop. In this
example, the feasibility domains for all three pairs do
not overlap and thus there exists no set of growth rates
that allow all pairs to coexist (Dall = ∅). If one chooses
a vector of intrinsic growth rates in the middle of the
darker region (red point), species 3 outcompetes species
2 in absence of species 1 (the point is outside of the

Sp. 1Sp. 2

Sp. 3

Sp. 1
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Sp. 1Sp. 2

Sp. 3

Sp. 1
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Sp. 1Sp. 2
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FIG. 7. Three general cases of community and pairwise coexistence. Panel A shows an example where the feasibility domain of
the triplet (DF) is completely inside the pairwise coexistence domain (Dall). If the vector of intrinsic growth rates is located at the
orange dot, each pair coexists in isolation and the three species can coexist. Panel B shows the case where pairwise (Dall) and com-
munity coexistence (DF) do not fully overlap. The orange dot corresponds to the scenario describe in Panel A, whereas the red dot
corresponds to a scenario where the triplet coexists, but not species 2 and 3 in isolation. Panel C corresponds to a rock-paper-scis-
sors case. This figure shows a community in which the feasibility domain of the three pairs do not intersect (Dall = ∅). If we choose
the vector of intrinsic growth rate at the red dot, we obtain a rock-paper-scissors dynamic, i.e, each species is out-competed by
another species in absence of the third. [Color figure can be viewed at wileyonlinelibrary.com]
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pairwise region described by the left side of the outer tri-
angle, and closer to species 3), species 1 outcompetes
species 3 in absence of species 2 (the point is outside of
the pairwise region described by the right side of the
outer triangle, and closer to species 1), and species 2 out-
competes species 1 in absence of species 3 (the point is
outside of the pairwise region described by the bottom
side of the outer triangle, and closer to species 2).
Nonetheless, the feasibility domain for the full three-spe-
cies systems is not empty, indicating that the indirect
interactions caused by the rock-paper-scissors competi-
tive structure increase the opportunity for coexistence.
To quantify the contribution to coexistence of indirect

interactions only emerging with more than two competi-
tors, one can calculate a pair of related metrics. The first
metric, what we call community-pair differential (D),
quantifies the degree to which coexistence is more or less
easily obtained with the inclusion of indirect effects only
emerging with more than two species. Specifically, one
can calculate the difference in the size of the feasibility
domain for the full n-species community vs. that allow-
ing the coexistence of all pairs. Mathematically, this is
given by D = Ω - Ωall, where Ω is the structural analog
of niche difference and Ωall is the fraction of intrinsic
demographics compatible with the coexistence of all
pairs in the community. We calculated Ωall using a simple
Monte Carlo approach by randomly sampling vectors of
intrinsic growth rates uniformly on the sphere (R code
provided on Dryad; Saavedra et al. 2017). Note that this
metric can only take values between [ - 1, 1]. A positive
value indicates greater opportunities for coexistence in
the full community (as in Fig. 7C), a negative value indi-
cates less opportunities for coexistence (as in Fig. 7A).
In other words, a positive value of community-pair dif-
ferential indicates that indirect interactions promote
more opportunities of coexistence as it would be
expected from the intersection of pairwise niche differ-
ences, and vice versa for negative values.
The community-pair differential, however, tells us

nothing about the degree to which the pairwise mecha-
nisms actually explain the coexistence of all n species,
i.e., the degree to which the two feasibility domains over-
lap. Thus, the second metric, what we call community-
pair overlap (x), involves calculating the proportion of
the feasibility domain for the entire community (DF)
that lies inside the feasibility domain under which all
pairs coexist (Dall). We calculated x following the same
Monte Carlo approach used for the previous metric
(code in R provided as Supplemental Material). This
metric can only take values between [0, 1]. The smaller
the value, the more the coexistence of the n-species
requires demographic rates different than those allowing
pairwise coexistence. In other words, the smaller the
value, the stronger the importance of indirect interac-
tions for species coexistence. For instance, a value of one
would indicate complete overlap as in the case shown in
Fig. 7A, whereas a value of zero would indicate no over-
lap as in the case of Fig. 7C.

In sum, these two metrics evaluate whether the coexis-
tence of all n-species is more easily obtained than the
equivalent coexistence for all pairs of n species (D), and
the degree to which the conditions for pairwise coexis-
tence are the same as those required for the coexistence
of all species in the community (x). Of course, the alter-
native arrangements of the feasibility domains can be
visually inspected in the three species simplex. However,
for systems with more than three species, where the feasi-
bility domains cannot be directly examined, these met-
rics are essential for evaluating the effects of indirect
interactions. Note that this approach can be applied to
any competition matrix regardless of its stability proper-
ties (with its corresponding dynamical interpretation).
Both the community-pair differential and the commu-
nity-pair overlap describe regions of the feasibility
domain, which correspond to the necessary conditions
for species coexistence.

QUANTIFYING THE SOURCES OF COEXISTENCE

IN A FIELD SYSTEM

To illustrate how the structural approach can quan-
tify the extent to which indirect effects influence coexis-
tence in nature, we applied our methods to a field
system of annual plant competitors occurring on ser-
pentine soils. In prior work (Godoy et al. 2014, Kraft
et al. 2015), we have quantified the pairwise interac-
tions between 18 annual plant species in experimental
gardens established in the field in California, USA. We
did so by establishing a density gradient of each com-
petitor, and sowing all competitors as focal individuals
into that density gradient. We then fit relationships
between the fecundity of the focal individuals and the
density of a surrounding competitor to estimate each
pairwise interaction coefficient. In addition, we quanti-
fied all key demographic rates for the 18 species (germi-
nation, survival of ungerminated seeds, and innate
fecundity), which in combination with the fitted inter-
action coefficients (a), can be used to parameterize a
standard model of competing annual plants with a seed
bank (see Appendix S4). Data are provided on figshare
(Godoy et al. 2017a).
Using the fitted pairwise interactions, we formed all

possible communities of three and four species of the 18
species, and filtered (giving 27% and 6% of the total
number of triplets and quadruplets) those that generated
D-stable matrices. Note that D-stable matrices are those
that are locally stable for any feasible equilibrium point
(see Appendix S3). Recall that conditions for global
stability with this annual plant model in n-dimensional
systems are not known (Case 2000). Importantly, our
results were qualitatively the same without filtering. We
then calculated the metrics of community-pair differen-
tial (D) and community-pair overlap (x) for all D-stable
triplets and quadruplets. Thus, results correspond to
the necessary conditions for species coexistence and
D-stable systems.
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As an illustration of the empirical cases, Fig. 8 shows
the feasibility domains (projected onto a unit simplex) of
two different triplets and one quadruplet formed with
the empirically measured pairwise interactions. These
feasibility domains can be located anywhere within the
unit space of species demographic values, and can over-
lap (Fig. 8A) or not overlap (Fig. 8B) the feasibility
domain allowing for the coexistence of all pairs within
the triplet. In fact, we found that in only 11 out of 138
stable triplets (7%) the feasibility domain of the commu-
nity DF lies completely inside the intersection of all pair-
wise feasibility domains Dall. In 80% of cases DF lies
partially inside Dall, and in the other 13% of cases DF is
completely different from Dall. For empirically con-
structed quadruplets, we found that in 51 out of 81
(63%) cases DF lies partially inside Dall, and in the
remaining 37% of cases DF has no overlap with Dall.
Thus, these qualitative analyses indicate that indirect
effects among competitors frequently change the demo-
graphic rates required for coexistence. To provide a

quantitative analysis of these effects, we can apply the
community-pair differential and community-pair over-
lap measures to all these communities.
We find that the feasibility domain for the triplets and

quadruplets is most frequently of comparable size to the
domain allowing the coexistence of all pairs (D � 0;
Fig. 9A). In some cases, the opportunity for coexistence
is less than that for all pairs of species, and in modestly
more cases, the opportunity for coexistence is greater.
This suggests that indirect effects have no systematic
effect on the conditions for coexistence in triplets and
quadruplets of the studied annual plant species. A
related question is how much of the opportunity for
coexistence in the three or four-species assemblages rests
on indirect effects, i.e., demographic rates different than
those allowing the coexistence of all pairs.
Fig. 9B shows that although in the majority of cases the

feasibility domains of the triplets and quadruplets overlap
with the domains that allow all pairs to coexist (x > 0),
only in about 15% of triplets and <5% of quadruplets this

FIG. 8. Illustration of feasibility domains for triplets and quadruplets of annual plant species in a California field system. Panels
A and B show the feasibility domains for two triplets, and Panel C for a quadruplet based on the empirically measured interaction
coefficients (Godoy et al. 2014, Kraft et al. 2015). These feasibility domains are all projected on a unit simplex as shown for artifi-
cially constructed interaction matrices in Figs. 5-7. Here, the demographic rates compatible with coexistence correspond to the
seeds produced per seed lost from the system as explained in Appendix S4. The four-letter species codes correspond to Agoseris
heterophylla (AGHE), Centaurea melitensis (CEME), Hemizonia congesta (HECO), Lasthenia californica (LACA), Lotus
wrangeliensis (LOWR), Clarkia purpurea (CLPU), Navarretia atractyloides (NAAT), and Geranium carolinianum (GECA). [Color
figure can be viewed at wileyonlinelibrary.com]
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overlap is more than 0.9. In fact, the most likely commu-
nity-pair overlap is near zero (x � 0) indicating that
demographic rates allowing the coexistence of all three
species in the triplets and quadruplets are completely dif-
ferent than those allowing the coexistence of all pairs
within the communities. In these cases, coexistence at least
partly depends on indirect effects among the competitors
as the reduction of the system to a series of isolated pairs
would not give the coexistence of all species.
Overall, these results reveal that in this annual plant

community, indirect effects emerging with more than two
species can help stabilize coexistence, but these effects are
almost equally likely to harm coexistence, and in most
cases, have modest effects. Moreover, as one may antici-
pate, pairwise interactions become less reliable indicators
of species coexistence with increasing species richness.

DISCUSSION

Understanding the processes enabling the coexistence
of three or more competitors has long proven challeng-
ing because the outcome of their interaction depends on
the combined effects of pairwise coexistence mechanisms
and those emerging from the indirect interactions that
only emerge in multispecies systems (Levine 1976, Stone
1988). A major hurdle to understanding has been the
dearth of metrics that can be used to characterize oppor-
tunities for coexistence in multispecies systems. We
believe that the structural approach developed here bet-
ter positions ecologists to overcome these challenges.
The proposed structural measures of multispecies

coexistence are directly derived from the population
dynamics of the n-competing species, as can be described
by a range of continuous and discrete time models (see

Appendix S4). Different from an algebraic approach, the
structural approach allows one to compare the coexis-
tence predicted by simple pairwise interactions to that
predicted when those interactions are embedded in a net-
work of other interactions. With these metrics, ecologists
parameterizing models of competition can evaluate the
extent to which observed coexistence rests on the indi-
rect interactions that emerge when species are embedded
in competitive networks. It is important to recall that
these metrics allow us to understand the necessary (feasi-
bility) conditions for species coexistence. Sufficient con-
ditions (e.g., global stability) are very difficult to derive
for n-dimensional systems in some population dynamics
models (Logofet 1993, Hofbauer and Sigmund 1998),
but they can certainly be investigated in future research.
We would also like to stress that the approach to quan-

tifying pairwise niche differences and average fitness
differences under MCT (Chesson 2000) and the struc-
tural approach presented here are similar to one another
but not the same. The similarity lies in the fact that coex-
istence requires the (structural) fitness differences to lie
within the bounds set by the (structural) niche difference.
However, the fitness difference defined under MCT
includes species differences in their innate demographic
potential discounted by their general sensitivity to com-
petition (with details varying by model), as this determi-
nes the competitive dominant in the absence of any
stabilizing niche difference. By contrast, in the structural
approach, species differences in their sensitivity to com-
petition shift the feasibility domain and can affect its
width. Moreover, in contrast to the two-species case, mul-
tispecies coexistence cannot be predicted with structural
analogs of the niche and fitness differences only. This
arises because feasibility domains of the same extent can

FIG. 9. Quantifying the sources of multispecies coexistence in annual plant assemblages. For fitted competition coefficients
obtained in an annual plant system (Godoy et al. 2014, Kraft et al. 2015), panels A and B show the community-pair differential (D)
and the community-pair overlap (x), respectively. The community-pair differential evaluates whether the coexistence of all n species
is more easily obtained than all pairs of n species. Positive values indicate that the feasibility domain for the community (DF) is lar-
ger than the feasibility domain of pairwise coexistence (Dall). The community-pair overlap evaluates the degree to which the condi-
tions for pairwise coexistence are the same as those required for the coexistence of all the species in the community. The smaller the
value, the more the feasibility domain of the community differs from the feasibility domain allowing pairwise coexistence. [Color
figure can be viewed at wileyonlinelibrary.com]
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differ in their geometry (see Appendix S7), implying that
communities with the same likelihood of coexistence may
be robust to different directions of environmental distur-
bances (changes to the demographic rates).
Unfortunately the limitation above for multispecies

systems is not easily solved, but one possible solution
involves computing the asymmetry of the feasibility
domain to study how different drivers can change
regions of coexistence. This asymmetry can be estimated
by the variation among all the n faces of the given multi-
dimensional cone, and computed by the variance of all
the n-structural analog of niche differences generated
after independently removing each of the n species from
the community (see Appendix S7). This measure of
asymmetry may lead to a better understanding of the
dynamical relationship between a community’s toler-
ance to perturbation and changing pairwise interactions.
We acknowledge that ideally the MCT and structural
approaches would perfectly match, but the structural
approach we develop here has the advantage of being
scalable to multispecies communities, and we encourage
future work to find better analogs between the MCT and
structural approaches.
Importantly, our structural approach gives empirical

ecologists new tools to explore the controls over coexis-
tence in networks of pairwise interactions. Prior
approaches show how one can quantify the impact of
species on one another via chains of indirect interactions
(Yodzis 1988, Wootton 1993), and classic theory can be
used to evaluate how the addition or removal of species
from communities influences local stability of the multi-
species equilibrium (May 1972, Roberts 1974). But these
methods do not easily reveal the contribution to coexis-
tence of indirect effects that only emerge in multispecies
systems, as can be understood from the structural stabil-
ity metrics developed here.
Of course, using these metrics requires that empiricists

parameterize models of competition with field data, a
task that can be quite labor intensive in diverse systems.
Nonetheless, an increasing number of studies parameter-
ize competition models with information on the demo-
graphic performance of focal individuals, and their
response to variation in competitor density and identity
(e.g., Godoy et al. 2014, Chu and Adler 2015). These
parameterization should be constrained to the spatial
scale under investigation. With the structural metrics
developed here, one can then evaluate a range of prob-
lems about multispecies coexistence in field settings.
First, the structural analog of niche difference reveals
the likelihood of coexistence given different innate
growth rates for the competing species. This metric can
therefore be compared across communities in different
experimental contexts to evaluate how different factors
contribute to the robustness of coexistence. For example,
one can ask how climate warming modifies opportuni-
ties for coexistence in systems of three or more competi-
tors, and whether its effects on diversity result from
changes to the interaction coefficients or species’ innate

growth rates. Second, by quantifying how robust coexis-
tence is to variation in the growth rates of competitors,
ecologists can evaluate the variation among species pairs
in the strength of their niche differences. One can ask,
for example, how evenly distributed is niche differentia-
tion among the members of a community, revealing
whether the persistence of some species is more robust
to changing growth rates than others.
Finally, and as demonstrated here for assemblages of

annual plant species, one can evaluate how chains of
interactions among competitors contribute to, or detract
from, multispecies coexistence. As illustrated in
Figs. 6-9, this contribution or detraction can be mea-
sured by predicting the growth rates compatible with the
coexistence of all species pairs (in isolation from the rest
of the community), and comparing this region to the
growth rates compatible with the coexistence of all
species embedded in the full matrix of interaction coeffi-
cients. Based on the analysis of the annual plant system
presented here, we anticipate that many communities
should exhibit regions of separation between n-species
and pairwise coexistence, indicating a significant contri-
bution of indirect effects to possible coexistence. Further
empirical measures of interaction coefficients in other
systems are of course needed to properly test the gener-
ality of these predictions. More generally, our field
annual plant example illustrates that the structural
approach can be applied with competition models quite
different than Lotka-Volterra, and that it can be fully
parameterized with field data.
Looking ahead, we see several interesting theoretical

directions following from the work developed here. As
we have shown, one challenge that arises from mecha-
nisms of coexistence emerging in n-dimensional systems
is that the coexistence of the entire community in no way
guarantees that sub-units of that community are also
feasible and stable (Fig. 7). This raises the interesting
question of how such communities assemble from less
diverse systems (consider assembling a community with
rock-paper-scissors competition one species at a time).
Fortunately, our metrics and approach could also be
useful for understanding the most likely order of assem-
bly and disassembly in ecological communities. Each
change in the composition of a community brings
together a change in the feasibility domain, widening or
shrinking the conditions compatible with the coexistence
of all residents with a new species. In fact, previous work
has shown that during the assembly and disassembly of
ecological communities, feasibility is either maximized
or preserved through time (Saavedra et al. 2016a, b),
suggesting that the order of assembly and disassembly
might be anticipated based on the feasibility properties
of the community.
A second promising opportunity to build on the

approach developed here involves the inclusion of
higher-order interactions that emerge in species-rich
competitive systems. The insights gained from our met-
rics rest on the assumption that the interactions between
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species are fundamentally pairwise. A more holistic view
of indirect interactions in diverse competitive communi-
ties acknowledges that species can affect one another by
altering the abundance of shared competitors, but also
by modifying the per capita effect of one species on
another (Wootton 1993, Billick and Case 1994). Ecolo-
gists have limited understanding of the importance of
these higher-order interactions, in part because quantify-
ing their importance in field systems with many competi-
tors is exceedingly difficult. Thus, while our approach
focused on pairwise interactions is a useful and realistic
first step for empirical studies (Vandermeer 1969), future
theory exploring how and whether higher-order interac-
tions in multispecies systems influence coexistence would
be an important next step.
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Appendix S1: Invasion criterion

One of the most useful criteria for understanding multispecies coexistence has been based

on the notion of species invasion (Case, 1990, 2000). The invasion criterion establishes

that if in a community of n-species, each species can be removed, reintroduced into the

sub-community of n− 1 species, and grow, then species coexistence is guaranteed (Case,

2000). Mathematically, the condition for species i to invade the sub-community of n− 1

species is given by the invasion growth rate rinvi . For the Lotka Volterra model defined in

the main text, let r be the vector of intrinsic growth rates and α the matrix of

competition coefficients of a given set of n-species. Let us assume that species i is

depressed to the limit at which its abundance is zero. Then the abundances, if positive,

of the n− 1 remaining species are given by the following vector

Ñ−i = (α−i,−i)
−1r−i, (S1)

where α−i,−i is the interaction matrix without row and column i, and r−i is the vector

of intrinsic growth rates without the element i. Assuming that the abundances of the

n− 1 species are positive, i.e., (Ñ−i)j > 0 for each species j, the invasion growth rate of

species i then can be defined by

rinvi = ri −
∑
k

(αi,−i)k(Ñ−i)k, (S2)

where αi,−i is the row i of the matrix of competition coefficients without the column i.

Biologically, the invasion growth rate corresponds to the per capita growth of species i

when completely depressed, and it shows that species i can invade the community if the

invasion growth rate is positive, i.e., rinvi > 0. Assuming that the competition system is

globally stable, and that each species can invade, then it is clear that this criterion does

grant the coexistence of the n-species community. Note, however, that the invasion

criterion defined above needs as a prerequisite the coexistence of all the combinations of

n− 1 species (i.e., for all cases the solution of Equation S1 has to be positive). This

prerequisite is always true for 2-species communities (if one species goes extinct then the

other one will always persist).

Importantly, the invasion criterion guarantees multispecies coexistence in the classical

Lotka-Volterra competition model. That is, let α be the interaction competition matrix

of a community of n species, and let us assume that this matrix of competition

coefficients is either positive definite or Volterra-dissipative, i.e., globally stable. Any

sub-matrix of a positive definite or Volterra-dissipative matrix is again positive definite or

Volterra-dissipative (Logofet, 1993). Biologically, this means that the global stability

property is conserved when looking at a sub-community. Additionally, the invasion

criterion assumes that all the n sub-communities of n− 1 species are feasible. This

implies that an equilibrium point with fewer species in one of the n− 1 sub-communities

1



is automatically unstable. The opposite would be in contradiction to the assumption that

the sub-communities of n− 1 are all feasible. Similarly, the invasion criterion assumes

that the invasion growth rates are positive for all species. This implies that the n feasible

equilibria with n− 1 are all unstable. Therefore, the only possibility is the existence of a

feasible and stable equilibrium point for the entire community. This proves that the

invasion criterion is a sufficient condition for multispecies coexistence (Case, 2000). In

fact, the invasion criterion can be thought of as a sufficient condition for short-term

species permanence (Jansen and Sigmund, 1998). Yet, this criterion does not apply any

more in the case where at least one of the n− 1 sub-communities is not feasible.

Note that the invasion criterion needs as a prerequisite the coexistence of all the

combinations of n− 1 species (i.e., for all cases the solution of Equation S1 has to be

positive). This prerequisite is always true for 2-species communities (if one species goes

extinct then the other one will always persist). For 3-species communities, this will imply

that the region of triplet coexistence (Ω) always has to be inside the region of pairwise

coexistence (Ωall). Figure 7A illustrates this case. If the set of intrinsic growth rates is

located anywhere inside the dark region (e.g., orange point), each individual species can

be removed (the other two species will coexist as defined by their region of pairwise

coexistence), and reintroduced (the triplet will coexist as defined by the darker region).

However, Figure 7B illustrates a scenario where the region of triplet coexistence does not

fall 100% inside the region of overlap of pairwise coexistence (similar to the case shown in

Figure 6D). Importantly, if the set of intrinsic growth rates is located at the orange point

(inside the region of overlap), the invasion criterion applies just as in the case above.

However, if the set of intrinsic growth rates is located at the red point (outside the region

of overlap), then we can observe triplet coexistence but not the coexistence of species 1

and 2 in isolation (left side).

An extreme case showing that the invasion criterion is not a necessary condition for

species coexistence is the rock-paper-scissors dynamic, whose feasibility domain is

illustrated in Figure 7C. Here, the domain of coexistence of the three pairs of species does

not intersect (the pairwise domain does not exit). If one chooses a vector of intrinsic

growth rates in the middle of the darker region (red point), species 3 out-competes

species 2 in absence of species 1 (the point is outside of the pair-wise region described by

the left side of the outer triangle, and closer to species 3), species 1 out-competes species

3 in absence of species 2 (the point is outside of the pair-wise region described by the

right side of the outer triangle, and closer to species 1), and species 2 out-competes

species 1 in absence of species 3 (the point is outside of the pair-wise region described by

the bottom side of the outer triangle, and closer to species 2). Therefore the coexistence

of the triplet only emerges from a mechanism other than pairwise

coexistence—rock-paper-scissors competition in this case. Overall, an invasion condition

2



based on one species invading the other two does not entirely capture the potential for

coexistence (Case, 2000). This potential emerging from simple population dynamics can

only be seen by moving from an algebraic into a structural approach.
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Appendix S2: Coexistence defined by community

persistence and permanence

The ecological concept of species coexistence is broad and several important but not

necessarily equivalent definitions have been proposed (Hofbauer and Sigmund, 1998).

Generally, coexistence is taken to mean the persistence of all species, which implies that

species abundances should be strictly positive over the long term (Hofbauer and

Sigmund, 1998). However, this definition of coexistence does not exclude the possibility

that the trajectories of species abundances, defined by the dynamical system, could

transiently approach zero for one or more species. In such cases, a small perturbation can

push species towards extinction. Therefore, a system is called “permanent” if all

trajectories remain bounded away from zero, i.e., the abundances never go below and

above some positive thresholds (Hofbauer and Sigmund, 1998). Thus species permanence

is a stronger condition than species persistence for coexistence. With the structural

approach to species coexistence developed, we investigate the necessary condition for

permanence, and the necessary and sufficient condition for persistence: that is the

existence of a feasible and globally stable equilibrium point.

Unfortunately, sufficient conditions for permanence in systems with more than three

species are not known (Hofbauer and Sigmund, 1998). However, global stability of a

feasible (as defined in the text) equilibrium point is a sufficient condition for species

persistence (Svirezhev and Logofet, 1983; Logofet, 1993, 2005; Rohr et al., 2014; Saavedra

et al., 2016b,a), and conditions for global stability have been studied intensively during

the past decades (summarized in Appendix S3). Importantly, in many cases, global

stability conditions can be deduced directly from the matrix of competition coefficients,

and do not involve the intrinsic growth rates. For example, matrices of pairwise

interactions as derived from a niche overlap framework (termed “dissipative” (Volterra,

1931) are always globally stable (Svirezhev and Logofet, 1983; Logofet, 1993, 2005).

Therefore, to investigate species coexistence in this manuscript we focus mostly on

feasibility explicitly assuming that global stability is satisfied.

The conditions for global stability in a matrix of competition coefficients are described in

Appendix S3, but we note that even if we instead focus on a local stability condition, our

results remain largely the same for most models of competing species. Note that

feasibility is a necessary condition for permanence and persistence, while global stability

is a sufficient condition for persistence once feasibility conditions are fulfilled. Therefore,

our structural approach can provide the necessary conditions for species coexistence

regardless of whether the systems is stable or not.
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Appendix S3: Short review of stability analysis

In this appendix we present a short review about the mathematical results about the

stability of feasible equilibrium points for ordinary differential equations of the form
dNi

dt
= Nifi(N ). We recall that an equilibrium point (N∗

i ) is called feasible when it

satisfies both the condition fi(N
∗) = 0 and N∗

i > 0 for all species i. The theory presented

here is part of classic results that can be found in the following references (Volterra, 1931;

Johnson, 1974; Goh, 1977; Svirezhev and Logofet, 1983; Hofbauer and Sigmund, 1998;

Logofet, 1993; Takeuchi, 1996; Logofet, 2005).

For instance, a given equilibrium point is locally stable if any small perturbation in the

population size of species is absorbed, and the system eventually returns to its equilibrium

point. A stronger dynamical stability condition is global stability. Global stability implies

that the equilibrium point is a global attractor and that the trajectories of the dynamical

system converge to the equilibrium regardless of their starting point. Global stability is

conventionally derived from a Lyapunov function (Goh, 1977; Logofet, 1993).

The condition for local stability of an equilibrium point is encapsulated in the so-called

Jacobian matrix (J), which is evaluated at the equilibrium point (Case, 2000; Strogatz,

2001). We recall that the Jacobian matrix is made of the partial derivative of the right

side of the differential equation, i.e., Jij = ∂Nifi(N)
∂Nj

. Evaluated at a feasible equilibrium

point N∗
i , the Jacobian matrix reads,

Jij = N∗
i

∂fi(N )

∂Nj

|N=N∗ .

The classic results in dynamical systems state that an equilibrium point is locally stable

(i.e., the system return to its equilibrium point after infinitesimal small perturbation) if

all the eigenvalues of the Jacobian matrix have negative real parts (or positive real parts

if the negative sign is written in front of the matrix of competition coefficients) (Case,

2000; Strogatz, 2001). If one assumes a linear function for the per capita growth

functions fi = ri −
∑

j αijNj, then the Jacobian matrix is given by Jij = −N∗
i αij. The

Jacobian informs only about the local stability of the equilibrium point at which it has

been evaluated. However, here we are not only interested in one particular equilibrium

point and whether it is locally stable, but we are interested in assessing the global

stability of any feasible equilibrium point.

From now on, we assume that the per capita growth rate is a linear function, and

therefore, the dynamical system is given by the generalized Lotka-Volterra model,
dNi

dt
= Ni(ri −

∑
j αijNj). As shown above, the elements of the Jacobian matrix are a

function of both the interaction strength (αij) and the equilibrium point (N∗
i > 0).

Therefore, for a given interaction matrix α, the eigenvalues of the Jacobian matrix are
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function of the specific value of the equilibrium point. This implies, that in theory, it is

possible to have an equilibrium point that is locally stable, while another equilibrium

point is unstable for the same matrix of competition coefficients. To overcome this

problem, one can use the concept of D-stability (Johnson, 1974; Svirezhev and Logofet,

1983; Logofet, 1993, 2005). A matrix is called D-stable if its eigenvalues have positive real

parts when the matrix is multiplied from the left by any positive diagonal matrix. Thus,

if the matrix of competition coefficients α is D-stable, this condition grants the local

stability of any feasible equilibrium point.

The notion of D-stability grants the local stability of any feasible equilibrium point,

however, it does not grant global stability. By global stability of a feasible equilibrium we

mean that all the trajectories of the dynamical system converge to that equilibrium point

independently of the initial conditions, assuming they are positive (Volterra, 1931; Goh,

1977; Svirezhev and Logofet, 1983; Hofbauer and Sigmund, 1998; Logofet, 1993;

Takeuchi, 1996; Logofet, 2005). A sufficient condition that implies global stability is for a

matrix to be Volterra-dissipative. A matrix A is Volterra-dissipative if there exist a

positive diagonal matrix D such that the matrix DA+AtD is positive definite (all the

eigenvalues are positive). It has been proved that if the matrix of competition coefficients

α is Volterra-dissipative then any feasible equilibrium is globally stable. One can even

prove that if the matrix of competition coefficients α is Volterra-dissipative then there

exists a unique global stable equilibrium point, which is not necessarily feasible (some

species may go extinct).

Volterra-dissipative matrices imply D-stability, which in turn implies that all the

eigenvalues of the interaction matrix have real positive parts (Svirezhev and Logofet,

1983; Logofet, 1993, 2005). In general it is difficult to test whether a matrix is

Volterra-dissipative. However, for some classes of matrices we have analytic results. For

example if the matrix of competition coefficients is derived from species distances in a

niche space, then this matrix is automatically Volterra-dissipative (MacArthur and

Levins, 1967; Logofet, 1993). One can test whether a matrix is Volterra-dissipative by

testing if it is positive definite. A matrix A is positive definite if the eigenvalues of its

symmetrization (A+At) are positive. A positive definite matrix is automatically

Volterra-dissipative, however, a Volterra-dissipative is not necessarily positive definite.

Positive definite is in general a very strong condition on a matrix.

The above notions of stability assume a linear function for the per capita growth rate

(fi(N )), i.e., a generalized Lotka-Volterra model. In the following we present a

mathematical result that generalizes the concept of Volterra-dissipative to nonlinear

functions for the per capita growth rate (fi) (Goh, 1977). We introduce the matrix of the

partial derivative of the functions fi:
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αij(N ) =
∂fi(N )

∂Nj

.

This matrix is function of abundances N and can intuitively be interpreted as the

linearized interaction strength at the point N . If there exists a positive diagonal matrix

D such that Dα(N) +α(N)tD is positive definite for any positive value of N > 0,

then a feasible equilibrium is globally stable. Note that the diagonal matrix D has to be

independent of the point N . The difficulty is to find the diagonal matrix D, however, if

the matrix αij(N ) is positive definite for any value of N then a feasible equilibrium is

globally stable.
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Appendix S4: Examples of dynamical models to

which our structural framework can be applied

In this appendix we provide four examples of dynamical systems describing the

competition among species to which the structural framework apply (Volterra, 1931;

Case, 2000; Brauer and Castillo-Chavez, 2012). The two first examples are time

continuous models given by ordinary differential equation. The other two examples are

time discrete models and therefore are described by difference equations.

Competition Lotka-Volterra model

The competition Lotka-Volterra model is given by the following ordinary differential

equation (Volterra, 1931; Case, 2000; Brauer and Castillo-Chavez, 2012):

dNi

dt
= Ni

(
ri −

n∑
j=1

αijNj

)
The parameters of the model correspond to the intrinsic growth rate (ri > 0) of species i,

and the competition interaction strength (αij > 0) between species i and j. The

structural framework for the niche and fitness difference applies directly to the model,

and all these quantities (Equations 13 to 15) can be computed directly. The global

stability condition is determined by assuming that the matrix of competition coefficients

(α) is Volterra-dissipative (see Appendix S3).

Saturating competition model

This is a modification of the Lotka-Volterra model by assuming a non-linear function for

the per capita growth rates (Brauer and Castillo-Chavez, 2012). For this model we

assume that the negative effect of the competition is achieved trough a saturating

function. The model is given by the following ordinary differential equation:

dNi

dt
= Ni

(
−µi +

νi
1 +

∑n
j=1 α̃ijNj

)
The parameters of the model correspond to the demographic parameters (µi > 0 and

νi > 0) of species i, and the competition interaction (α̃ij > 0) between species i and j. To

apply the structural framework to this model we need first to derive the equation for a

feasible equilibrium. A feasible equilibrium N ∗ corresponds to the solution of

−µi +
νi

1 +
∑n

j=1 α̃ijN
∗
j

= 0
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for all species i. By manipulating this equation we arrive at the following linear equation

νi − µi =
n∑
j=1

µiα̃ijN
∗
j .

By identifying ri = νi − µi and αij = µiα̃ij, we can apply the structural framework

(Equations 13 to 15). The stability condition for the model can be derived as follow. As

explained in Appendix S3, we compute the partial derivative of the per capita growth

functions. They are given by

αij(N ) =
νiα̃ij

(1 +
∑n

j=1 α̃ijNj)2
.

If the matrix α̃ is derived from a niche overlap framework, then this implies that the

matrix of partial derivatives (αij(N )) is positive definite for any value of N > 0, and

therefore, this grants the global stability of any feasible equilibrium point.

Time discrete Lotka-Volterra model

The time discrete version of the competition Lotka-Volterra model is given by the

following difference equation (Case, 2000; Brauer and Castillo-Chavez, 2012):

Ni,t+1 = Ni,te
(ri−

∑S
j=1 αijNj).

The state variable Ni,t denotes the abundance (or biomass) of species i at time t. The

parameters of the model correspond to the intrinsic growth rates (ri) of species i, and the

competition interaction strength (αij). Similarly to the time continuous model, the

structural framework (Equations 13 to 15) applies directly. The stability condition is

more difficult to derive. Indeed, even if the matrix of competition coefficients α is

positive definite or Volterra-dissipative and there exists a feasible equilibrium point,

depending on the level of intrinsic growth rate, the model may exhibit cyclic and chaotic

behavior. This phenomenon is known as the doubling-period.

Annual plant model

The annual plant model is a time discrete model that describes the dynamic of seed

banks. The state variable Ni,t corresponds to the seed bank of plant species i at time t.

The model is given by the following difference equation (Chesson, 1990):

Ni,t+1 = (1 − gi) siNi,t +
giλiNi,t

1 +
∑n

j=1 α̃ijgjNj,t

.

The parameters correspond to the germination rate (0 < gi < 1), the seed survival

probability (0 < si < 1), the fecundity rate (λi), and the competition strength (α̃ij). To

apply the structural framework, we first need to derive the equations determining the
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feasible equilibrium N ∗ > 0. A feasible equilibrium has to be the solution of the equation

(1 − gi) si + giλi
1+

∑n
j=1 α̃ijgjN∗

j
= 1 for all species i. By manipulating this equation we can

derive the following linear equation:

giλi
1 − (1 − gi)si

− 1 =
n∑
j=1

α̃ijgjN
∗
j .

By identifying ri = giλi
1−(1−gi)si − 1 and αij = α̃ijgj, we can apply the structural framework

(Equations 13 to 15). The stability conditions are difficult to derive analytically.

Numerical simulations tend to suggest that if the matrix of competition coefficients α̃ is

positive definite or Volterra-dissipative then a feasible equilibrium is globally stable.

However, there has been no proofs showing the conditions for global stability in

multispecies systems.
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Appendix S5: Differences between the MCT and the

structural framework for 2-species coexistence

The structural approach and MCT framework quantify niche and fitness differences in a

slightly different way. MCT’s framework incorporates the competitive imbalance between

two competitors, by multiplying each term of the inequality (Equ. 3) by
√

α22α21

α11α12
, while

the structural approach quantifies directly the solid angle defined by the same inequality

(Equ. 3). Therefore, MCT’s niche difference can be seen as the structural analog of niche

difference after removing the effects of the competitive imbalance. In the MCT approach,

removing the effects of the competitive imbalance has the advantage of revealing the

dominant competitor when the niche difference is zero.

Figure S1 shows two extreme cases illustrating the subtle but fundamental difference

between MCT’s and the structural frameworks. Specifically, the top panels (A-C) show

that if the position of the feasibility domain (area formed by the inequalities) changes due

to a changing competitive imbalance, a compensatory increase in the MCT niche

difference is required to yield the same structural analog of niche difference Ω. Similarly,

the bottom panels (D-E) show that if one interspecific competition coefficient equals zero

(i.e., one of the slopes lies on the border) any niche difference less than 1 will allow

coexistence under MCT. By contrast, the structural approach is a geometric approach

that quantifies the set of intrinsic growth rates leading to coexistence independent of

whether the competition among species is balanced (and gives different Ω in the two

cases depicted in panels d and e). Note that only the structural approach has a

probabilistic interpretation. Indeed the structural-based measure of niche difference Ω

gives the probability of having a feasible system, i.e., it is the probability of sampling a

set of growth rates in the feasibility domain (assuming that the growth rates are sampled

uniformly but with a fixed norm, where the direction of the vector of growth rates is

sampled uniformly).

We may wonder if there is a way to incorporate the competitive imbalance into the

structural approach. To do this, we first need to understand from where this fundamental

difference is arising. MCT’s niche difference is deduced from the two inequalities (2),

which give the condition of coexistence (assuming the stability condition satisfied). The

two inequalities (2) are then combined into Equation (3), which describes the upper and

lower bound that the ratio in intrinsic growth rates can tolerate to ensure coexistence.

Then the competitive imbalance term is incorporated by multiplying each term of

Equation (3) by the factor
√

α22α21

α11α12
. This leads to the classical definition of niche

difference (Equ. 4).
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Figure S1: Differences between the MCT and the structural approaches. Panels
A and B show the same area (Ω) between the two inequalities (green lines) but in different
positions characterized by the angle γ between the border (x-axis) and the centroid of the
area (orange line). Panel C shows the value of the classic niche difference as a function
of γ. Note that in the structural approach, the structural analog of niche difference (Ω)
does not change as a function of γ. The dashed lines correspond to the values of γ shown
in Panels A and B. The red line in Panel C corresponds to the renormalized structural
analog of niche difference. Panels D and E show different areas (Ω), where the bottom
slope lies on the border (x-axis). Panel F shows the value of these areas calculated as
the niche difference under the structural approach (x-axis) and the classic niche difference
(y-axis). Note that the classic niche difference is always 1. The dashed lines correspond to
the values of Ω shown in Panels D and E.

As explained in the main text, simple inequalities equivalent to the MCT’s ones for

n-species do not exist. Therefore, there is no straightforward way to incorporate the

competitive imbalance in the structural approach. Note that in the two species case,

incorporating the competitive imbalance is equivalent to renormalizing the intrinsic

growth rates of the two species by r1 → r1/
√
α11α12 and by r2 → r2/

√
α21α22. Then we

also need to renormalize the interaction strengths as follows[
α11 α12

α21 α22

]
−→

[
α11/
√
α11α12 α12/

√
α11α12

α21/
√
α21α22 α22/

√
α21α22

]
.

Finally, we can recompute the solid angle with the renormalized interaction strengths.

For two species, the renormalized solid angle behaves in a similar way as the classical
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niche difference (shown by the red line on Figure S1.C). More generally, in dimension n,

we may renormalize the interaction strengths as follows

αij −→
αij

n
√∏n

k=1 αik

and compute the solid angle (Ω) based on the renormalized interaction strength.

However, this renormalization as in MCT’s approach is informative if no interspecific

interaction is close to zero (see discussion above). Moreover, the comparison of niche

differences (at any n-dimensional side in the simplex, is only possible under a structural

approach. Under MCT’s framework, as we would require to re-scale the matrix of

competition coefficients for each pairwise case (or n-dimensional side in the simplex),

each niche difference would lead to different units (defined by the particular re-scaling),

making impossible their straight comparison across matrices or dimensions. In fact, to

make all niche differences with the same units, one would need to remove the re-scaling,

going back to the structural approach.
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Appendix S6: Mathematical derivation and numerical

estimation of the structural analog of niche difference

Ω

The structural analog of niche difference is mathematically defined as the normalized

solid angle of the cone defining the feasibility domain. We recall that this cone is

generated by the column-vectors of the interaction strength matrix:

DF (α) = {r = N∗
1v1 +N∗

2v2 + · · ·+N∗
nvn, with N∗

1 > 0, N∗
2 > 0, . . . , N∗

n > 0} ,

where

α =

α11 · · · α1n

...
. . .

...

αn1 · · · αnn

 =


...

...
...

v1 v2 . . . vn
...

...
...

 .
The solid angle of such a cone can be computed by the following multiple integration (for

the mathematical derivation and details see Ribando, 2006):

Ω =
2n| det(α)|

πn/2

∫
· · ·

∫
Rn

≥0

e−x
TαTαxdx.

The solid angle has been normalized such that Ω = 1 in absence of interspecific

interaction (αij = 0, i 6= j). Moreover, by setting αTα = 1
2
Σ−1, the above integration

transforms into:

Ω =
2n

(2π)n/2
√
| det(Σ)|

∫
· · ·

∫
Rn

≥0

e−x
T 1

2
Σ−1xdx,

which is (up to a multiplicative factor of 2n) the cumulative distribution of a multivariate

normal distribution centered in zero and of variance-covariance Σ. The cumulative

distribution of a multivariate normal distribution can efficiently be estimated using the

quasi Monte-Carlo algorithm developed by A. Genz (Genz and Bretz, 2009; Genz et al.,

2016).
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Appendix S7: Geometric shapes of the feasibility

domain

Here, we explore the different geometric shapes of the feasibility domain and their effect

on multispecies coexistence. To do this, we randomly generated 20 thousand globally

stable communities with different number of species, where the interaction matrices were

drawn following a niche framework (see below). For each generated community, its

structural analog of niche difference Ω was calculated, and then different vectors of

intrinsic growth rates r were sampled and used to compute the number of coexisting

species and the structural analog of fitness difference θ. The number of coexisting species

was computed by solving the abundances at equilibrium N∗
i (abundances greater than

zero are considered as coexisting species). The structural analog of fitness difference was

computed by comparing the sampled vector r and the corresponding centroid of the

feasibility domain rc.

We find that for communities with more than 2 species, there is no longer the clear

division between regions of coexistence and exclusion, as in the 2-species case (Fig. S1).

While the combination of high structural analog of niche differences and low structural

analog of fitness differences yield higher chances of coexistence as in the 2-species case,

now communities with the same combination of structural analog of niche and fitness

differences can have a different number of coexisting species. These findings reveal that,

in contrast to the 2-species case, multispecies coexistence cannot be predicted with niche

and fitness differences only. The reason is that two multispecies communities with the

same structural analog of niche difference may not tolerate the same structural analog of

fitness difference. This happens because various geometric shapes of the feasibility

domain (defined by the pairwise interactions) can produce the same structural analog of

niche difference Ω (Figs. S2A and S2B). This variable geometry implies that a community

can tolerate a greater structural analog of fitness difference in some directions than others.

The above limitations reveal a challenge when defining the structural analog of niche

difference in systems with more than two competitors, and this involves taking into

account the shape of the feasibility domain. Unfortunately this is not an easy task, but

one possible solution involves computing the asymmetry of the feasibility domain. This

asymmetry can be estimated by the variation among all the n-faces of the given

multidimensional cone. This can be computed by the variance of all the n-structural

analog of niche differences generated by removing each of the n-species in the community

independently. For instance, if we have a 3-species system, the feasibility domain will

form a 3-dimensional cone and can be projected on the 2-dimensional simplex. The

projection corresponds to a triangle, and each of its sides corresponds to the length of the

feasibility domain of each pairwise interaction. If the pairwise interactions are symmetric

and equal, this variance would be zero. The higher the variance is, the higher the
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asymmetry of the feasibility domain.

Figure S2C shows that for distinct 3-species communities with the same structural analog

of niche difference, the higher the variance or asymmetry in their feasibility domain, the

lower their minimum structural analog of fitness difference that can be tolerated in any

particular direction. Note that while the minimum structural analog of fitness difference

is a good indicator of the level of tolerance under random perturbations, the natural

variation in intrinsic growth rates may tend to fall in one particular direction. Thus,

systems with high asymmetry do not need to be vulnerable systems necessarily.

Niche framework

We generated 10 thousand random matrices following a niche overlap framework

(MacArthur and Levins, 1967; Levins, 1968). These matrices are by definition globally

stable, requiring only to have feasible equilibrium points to fulfill our conditions of

species coexistence. Specifically, these matrices were generated using the following

procedure. For a matrix of dimension S, assuming a one dimensional niche space, the

diet of species i is described by the niche utilization function. These functions are usually

taken as a Gaussian-like curve:

gi(x) =
ai√
2πσi

e
−x−µi

2σ2
i ,

where σi is the niche width of species i, ai is the amplitude, and µi the diet center. Then

the competition coefficients are calculated as

αij =

∫
gi(x)gj(x)dx.

Therefore, we can write

αij =
aiaj√
σ2
i + σ2

j

e
− 1

2

(µi−µj)
2

(σ2
i
+σ2

j
) .

Note that the matrix α is in general not symmetric, unless we assume the same niche

width and niche amplitude for all species. Recall that these interaction matrices are by

definition positive definite thus Volterra-dissipative, and therefore, a feasible equilibrium

point is globally stable (MacArthur and Levins, 1967; Svirezhev and Logofet, 1983;

Logofet, 1993).
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Figure S1: Structural analog of niche and fitness differences for n-species com-
munities. Panel A and B show, respectively, the average number of coexisting species
in (globally stable) randomly generated communities of 3 and 10 species as a function of
structural analog of niche (Ω) and fitness differences (θ). The darker (greener) the region,
the more the expected number of species that can coexist with a given combination of
structural analog of niche and fitness differences. Higher structural analog of fitness dif-
ferences can be computed in combination with lower structural analog of niche differences
because of geometric constraints, and must not be interpreted as if lower structural analog
of niche differences can tolerate higher structural analog of fitness differences.
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Figure S2: Structural analog of niche, fitness, and asymmetry. Panels A and B
show the projected feasibility domain of two distinct communities with 3 species. Both
communities have the same structural analog of niche difference (green area of feasibility
domain), but different geometric shapes (defined by their pairwise interactions). The
black vectors inside the feasibility domains correspond to the minimum structural analog
of fitness difference (θ) that can be tolerated in any direction. Panel C shows the minimum
tolerated structural analog of fitness difference as a function of the asymmetry in feasibility
domain. Each point corresponds to a different 3-species community, all with the same
structural analog of niche difference (Ω).
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