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Abstract. A theoretical analysis of density-dependent population dynamics in two patches sheds novel
light on our understanding of basic ecological parameters. Firstly, as already highlighted in the literature,
the use of the traditional r-K parameterization for the logistic equation (due to Lotka and Gause) can lead
to paradoxical situations. We show that these problems do not exist with Verhulst’s original formulation,
which includes a quadratic “friction” term representing intraspecific competition (parameter a) instead of
the so-called carrying capacity K. Secondly, we show that the parameter a depends on the number of
patches, or more generally on area. This is also the case of all parameters that quantify the interaction
strengths between individuals, either of the same species or of different species. The consequence is that
estimates of interaction strength will vary when population size is measured in absolute terms. In order to
obtain scale-invariant parameter estimates, it is essential to express population abundances as densities.
Also, the interaction parameters must be reported with all explicit units, such as (m2!individual"1!d"1),
which is rarely the case.
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INTRODUCTION

All simple population dynamics models make
the implicit assumption of “perfect mixing” of
individuals. This applies to single-species models
as well as to models with several interacting pop-
ulations, such as the Lotka–Volterra predation
and competition models. For the sake of simplic-
ity, we consider in this study the case of a single
population only. Perfect mixing is assumed in all
“point models,” that is, models with no space
structure, but is also assumed in spatially struc-
tured patch models: Individuals are assumed to
be perfectly mixed within each patch.

Here, we only consider the category of spatial
models with random, passive, dispersal. We do

not consider situations of intentional, directed
movement for which a very abundant literature
exists in the context of optimal foraging theory (see
the seminal papers of Charnov [1976] for patchy
space and of Arditi and Dacorogna [1988] for con-
tinuous space) or in the context of group formation
(e.g., Cosner et al. 1999, Tyutyunov et al. 2004).
Regarding patch models, they must obey an

obvious logical property: If two patches are
linked by migration, and if the migration rate
becomes infinite, the two patches become per-
fectly mixed among each other, and the system
must behave as a one-patch model for the total
population (Fig. 1).
In this study, we re-visit in the context of a pat-

chy environment some of the basic properties of
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the most fundamental models of single population
dynamics: the Malthus law and the logistic model.
Originally, these models were not developed with
a spatial context in mind. We will first show that
when adapted to a patchy environment, both of
these models satisfy the above-stated logical crite-
rion. However, we will also show that they pre-
sent one important difference. With Malthusian
growth, the resulting merged patch has intermedi-
ate demography between the two constitutive
patches, while the situation can be counterintu-
itive and paradoxical with the logistic model in its
usual r-K formalization. Furthermore, we will
show that the original Verhulst form of the logistic
equation is free of this paradox. This original form
used an r-a parameterization, with a being a
direct quantification of intraspecific competition.

Another important general message will be
that all interaction coefficients (intraspecific com-
petition in the case of the logistic model; interac-
tion strength in the case of the generalized
Lotka–Volterra model) depend on the number of
patches when population size is measured in
absolute terms. To account for this dependence,
population size must be expressed as a density.

MALTHUSIAN GROWTH IN TWO PATCHES

Let us first consider a population with no
intraspecific competition. In a perfectly mixed

single patch, the population follows exponential
growth:

dN
dt

¼ rN:

If the same population is split into two patches
linked by migration, the system dynamics can be
described as:

dN1

dt
¼ r1N1 þ bðN2 "N1Þ;

dN2

dt
¼ r2N2 þ bðN1 "N2Þ;

(1)

where the parameter b quantifies the migration
rate between the two patches, assumed (for sim-
plicity) to be the same in both directions (see
Fig. 1). Of course, each patch is supposed to be
perfectly mixed, with local growth rate ri.
As b becomes infinite, one can prove (see

Appendix S1) that the abundances become equal
in both patches and that the ensuing global
growth rate is the average of both growth rates.
That is, the total population NT = N1 + N2 obeys
the following equation:

dNT

dt
¼ "rNT ;

where"r ¼ r1 þ r2
2

:
(2)

Thus, exponential growth satisfies the above-
mentioned logical condition that mixing

Fig. 1. (A) In this study, we consider a single population split into two patches linked by a migration rate b.
(B) When b ? ∞, the two patches merge into a single one.
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perfectly two perfectly mixed patches leads to
the same situation as having a single perfectly
mixed patch. Moreover, the total population’s
demography is intermediate between the two
constituent subpopulations. The notion of patch
size is meaningless here because population
abundance is unlimited. The only meaningful
character of the patch structure is the number of
patches, which can lead to counterintuitive
effects, such as the following.

Starting from a reference situation with a sin-
gle patch in which a population grows with
some growth rate r1, adding a second patch with
a lower growth rate r2 will have a detrimental
effect on the total population growth. Although,
on first thought, adding a patch should be bene-
ficial to the total population, this second patch
actually acts as a sink to the first patch because
its growth rate is lower (even though it is posi-
tive).

Because of these difficulties in reconciling
exponential growth and patchy population
dynamics, it is sensible to use a bounded growth
model instead. Indeed, the simplest growth
model that is commonly used in patch situations
is the logistic model rather than the Malthus law.

LOGISTIC GROWTH IN TWO PATCHES

The natural way to model a two-patch system
with logistic growth is

dN1

dt
¼ r1N1 1"N1

K1

! "
þ bðN2 "N1Þ;

dN2

dt
¼ r2N2 1"N2

K2

! "
þ bðN1 "N2Þ:

(3)

The full mathematical study of this system
with intermediate values of b is rather complex
(see Arditi et al. 2015), but we will only focus
here on the properties of the perfectly mixed sys-
tem (i.e., b ? ∞).

In isolation (i.e., with b = 0), each patch equili-
brates at N'

1 ¼ K1;N'
2 ¼ K2. Thus, the notion of

“patch size” can be equated with the “carrying
capacity” K. Actually, this is the way that most
textbooks define the parameter K: The very
choice of words suggests that it is the environ-
mental capacity to carry a given population.
However, as we will show, K must only be con-
sidered as the asymptotic population size, not as

an environmental parameter, and we will refrain
from calling it “carrying capacity.”
When the two patches are perfectly mixed into

a single one (b ? ∞), one would expect that the
resulting total population stabilizes at the sum of
the two patch sizes: N'

T ¼ K1 þ K2. However, this
is generally not the case. It can be shown (see
Appendix S2) that the entire perfectly mixed pop-
ulation NT obeys the following logistic equation:

dNT

dt
¼ "rNT 1"NT

KT

! "
; (4)

where"r ¼ r1 þ r2
2

andKT ¼ 2
r1 þ r2

r1=K1 þ r2=K2
: (5)

In order to compare the perfectly mixed total
asymptotic population KT with the sum of the
separate asymptotic values K1, K2, this quantity
KT can also be written as

KT ¼ ðK1 þ K2Þ þ ðK1 " K2Þ
r1=K1 " r2=K2

r1=K1 þ r2=K2
: (6)

This expression was derived long ago by
Freedman and Waltman (1977), but it was pub-
lished with typographical errors that were partly
corrected by Holt (1985) and completely cor-
rected by Arditi et al. (2015).
The expression (6) makes it clear that KT can

be either greater or smaller than K1 + K2. Assum-
ing that patch 1 is the smaller one, that is,
K1 < K2, Eq. (6) says that merging the patches
will be beneficial if and only if r1/K1 < r2/K2.
Thus, connecting two patches into a single one
can be either beneficial or detrimental to the total
asymptotic population size. In the case that the
patches differ only with respect to Ki (i.e.,
K1 < K2) and do not differ with respect to the
intrinsic growth rate (i.e., r1 = r2), the effect is
always detrimental.
Obviously, the total patch size is (by definition)

the sum of the two patch sizes. However, because
the total asymptotic population size is not equal
to the sum of the two separate asymptotic values,
this implies that it is an error to identify the
asymptotic population size with “patch size.”
This is a serious problem for the interpretation of
the parameter K. For this reason, a more appro-
priate notation could be N∞ instead of K, as used
by Lotka (1925), or K∞ as proposed by Gabriel
et al. (2005).
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VERHULST GROWTH IN TWO PATCHES

The logistic equation is presented in virtually
all textbooks in the r-K formalism that we have
just used in the previous section. This model is
generally credited to Verhulst (1838). However,
this is historically somewhat inaccurate: Verhulst
coined indeed the term “logistic growth” and
was first to suggest a second-degree model, but
he used a different parameterization. He pro-
posed the following polynomial expression:

dN
dt

¼ rN " aN2: (7)

This equation has the stable equilibrium
N' = r/a.

The first author to present the logistic model in
the r-K parameterization was probably Lotka at a
New York meeting of the American Statistical
Association, where he used the notation N∞ for
the parameter later known as K (Lotka 1925, see
also Kingsland 1985: 85–86). To our knowledge,
the first author to use the notation K was Gause
in his seminal work with protozoans, where he
viewed K as the “maximal population that can
exist in the given microcosm with the given level
of food resources” (Gause 1934: 34), and the
quantity (K " N)/K as the “relative number of
still vacant places” (Gause 1934: 35).

Of course, the original r-a formulation can be
brought to the r-K formulation with the re-para-
meterization K = r/a. However, there is an
important difference in terms of ecological inter-
pretation. In the form (7), the parameter a has
the immediate meaning of quantifying intra-
specific competition. In a perfectly mixed envi-
ronment, it can be interpreted as the negative
contribution to growth due to interindividual
encounters. Thus, in the form (7), both parame-
ters have a demographic meaning and there is no
difficulty in assuming that r and a are indepen-
dent. This assumption implies that K = r/a
should be positively correlated to r, and available
empirical evidence shows that this is actually the
case (Mallet 2012: 641–642, DeAngelis et al. 2016).
The correlation between K and r is a problem of
the r-K parameterization, which normally assumes
that they are independent parameters. For this
reason, we strongly advocate the r-a formulation.
If the r-K formulation is used nonetheless, this

correlation must be acknowledged and taken
into account.
Using the Verhulst expression (7), the two-

patch model (3) becomes

dN1

dt
¼ r1N1 " a1N2

1 þ bðN2 "N1Þ;

dN2

dt
¼ r2N2 " a2N2

2 þ bðN1 "N2Þ:
(8)

If the perfectly mixed Verhulst equation is
written for the total population NT (see
Appendix S3), it becomes:

dNT

dt
¼ "rNT " aTN2

T ; with "r ¼ r1 þ r2
2

;

aT ¼
"a
2
; and "a ¼ a1 þ a2

2
:

(9)

As with the r-K logistic model, the total mixed
population equilibrium can be either greater or
smaller than the sum of the isolated equilibria,
depending on the parameter values:

N'
T ¼ r1

a1
þ r2
a2

! "
þ r1

a1
" r2
a2

! "
a1 " a2
a1 þ a2

: (10)

Because of the change of parameterization,
Eq. (10) can be interpreted with a different per-
spective from that of Eq. (6). Assuming again
that patch 1 is the poorer one (i.e., r1/a1 < r2/a2),
Eq. (10) says that merging the patches is benefi-
cial if and only if intraspecific competition is
weaker in patch 1 than in patch 2 (a1 < a2).
Two issues emerge when considering the total

population sizeNT. Firstly, as with the r-K formula-
tion, the total mixed population equilibrium can
be different from the sum of the equilibria in the
isolated patches. Secondly, the Verhulst second-
degree term due to intraspecific competition is
twice as small as its average value. Mathematically,
this is simply due to the fact that N2

T ¼ 4"N2. As we
will now show, this apparent spatial dependence
of the competition parameter is an artifact due to
treating population size in absolute numbers. If
population size is measured as a density (as it
should) or as the average population in the context
of our patch model, the problem disappears.
Considering the dynamics of the average pop-

ulation in the two perfectly mixed patches,
"N ¼ NT=2, Eq. (9) becomes:

d "N
dt

¼ "r "N " "a "N2: (11)
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Here, the average population follows a Ver-
hulst equation with both parameters being sim-
ply the averages of the corresponding patch
parameters. This equation is scale-invariant, and
the apparent scale dependence of the parameter
a disappears. It is easy to check that a similar
equation holds in the case of n perfectly mixed
patches. Consequently, in a patch context, it is
reasonable to study the average population "N or,
more generally, to express population size as a
density with dimension [individual/area]. In this
case, the dimension of the intraspecific competi-
tion parameter a is [area!individual"1!time"1]
and r has, as usual, dimension [time"1].

DISCUSSION

We have shown that the logistic equation in its
usual r-K parameterization presents paradoxical
properties when generalized to a multi-patch sit-
uation. Eqs. (5, 6) show that the total asymptotic
population size KT is not the simple sum of the
local asymptotic population sizes: The calcula-
tion of KT requires the knowledge of the local
growth rates ri. For this reason, we consider it as
misleading to designate K with the term “carry-
ing capacity” in the context of the logistic equa-
tion. However, the term can be useful in other
contexts, as in conservation biology, to express
the number of habitable sites in a given environ-
ment.

With the original Verhulst form (i.e., with the
r-a parameterization), Eq. (11) shows that both
parameters can simply be averaged indepen-
dently from one another in order to describe the
dynamics of the average population in the two-
patch environment. Importantly, this is valid
only when population size is expressed as a den-
sity, not as absolute abundance. Then, the Ver-
hulst form is invariant, which gives to it a clear
advantage over the r-K form in terms of mathe-
matical elegance. Philosophy of science teaches
that elegance is often a relevant criterion for
selecting among alternative theories (Farmelo
2002, see also Arditi and Ginzburg 2012: chap. 6).

The above considerations add to the long-
standing debate about the logistic equation and
to the criticisms of the widespread r-K expres-
sion when compared to the r-a Verhulst form
(Kuno 1991, Ginzburg 1992, Gabriel et al. 2005,

Mallet 2012). We have shown that returning to
the original expression resolves the paradox pre-
sented by the r-K model when merging two per-
fectly mixed patches. Mallet (2012) has shown
that the r-a form solves other paradoxes as well.
Regrettably, most, if not all, textbooks make
uncritical and exclusive use of the r-K form of
the logistic model.
We have insisted on the fact that population

abundance must be treated as a density. This also
applies to the interspecific interaction strengths
aij of the generalized Lotka–Volterra equations
commonly used in food web theory:

dNi

dt
¼ riNi þ

Xs

j¼1
aijNiNj; i ¼ 1. . .s: (12)

When measuring interaction coefficients in a
particular environment or experiment (e.g., Paine
1992, Laska and Wootton 1998, Berlow et al.
2004), the estimates cannot be applied at face
value to different conditions if the populations
are not measured as densities. Of course, all mea-
sured quantities must be reported with their full
units, which is unfortunately far from being
always the case.
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Appendix	S1:	Malthusian	growth	in	two	patches	

	

The	equation	system	(1)	can	be	rewritten	as:		

d(N1 + N2 )
dt

= r1N1 + r2N2 ,		 (A1a)	

d(N1 − N2 )
dt

= (r1N1 − r2N2 )− 2β(N1 − N2 ) .		 (A1b)	

	

As	β→∞ ,	the	mixing	time	scale	becomes	much	faster	than	the	demographic	time	scale.	In	the	

RHS	of	the	second	equation	(A1b),	the	first	term	becomes	negligible	in	front	of	the	second	one.	

Using	 x = N1 − N2 ,	this	equation	(A1b)	becomes	approximately	

dx
dt
= −2βx ,		 	

whose	solution	 x = x0 e
−2βt 	tends	to	 x = 0 ,	i.e.,	N1 = N2 .	Replacing	this	solution	

N1 = N2 = NT / 2 	into	eq.	(A1a)	gives	immediately	eq.	(2).		

	



Appendix	S2:	Logistic	growth	in	two	patches	

	

As	in	Appendix	S1,	the	equation	system	(3)	can	be	rewritten	as:		

d(N1 + N2 )
dt

= r1N1 + r2N2 −
r1
K1

N1
2 −

r2
K2

N2
2 ,	 (A2a)	

d(N1 − N2 )
dt

= r1N1 − r2N2 −
r1
K1

N1
2 −

r2
K2

N2
2

"

#
$

%

&
'− 2β(N1 − N2 ) .		 (A2b)	

	

As	explained	in	Appendix	S1,	the	system	can	be	simplified	to	a	single	equation	when	β→∞ .	

With	N1 = N2 = NT / 2 ,	eq.	(A2a)	becomes:		

dNT

dt
=
r1 + r2
2

NT −
r1
K1

NT
2

4
−
r2
K2

NT
2

4
,		 (A3)	

which	can	be	brought	to	the	standard	logistic	form	(4–5).		



Appendix	S3:	Verhulst	growth	in	two	patches	

	

As	in	Appendices	S1	and	S2,	the	equation	system	(8)	can	be	rewritten	as:		

d(N1 + N2 )
dt

= r1N1 + r2N2 −α1N1
2 −α2N2

2 ,	 (A4a)	

d(N1 − N2 )
dt

= r1N1 − r2N2 −α1N1
2 −α2N2

2( )− 2β(N1 − N2 ) .		 (A4b)	

	

As	explained	in	Appendices	S1	and	S2,	time	scale	arguments	lead	to	a	single	equation	when	

β→∞ .	With	N1 = N2 = NT / 2 ,	eq.	(A4a)	becomes:		

dNT

dt
= r1 + r2

2
NT −

1
2
⋅α1 +α 2

2
NT
2 ,		 (A5)	

which	can	be	written	in	the	standard	Verhulst	form	(9).		

	


