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ABSTRACT: Understanding the effects of biodiversity on community
persistence and productivity is key to managing both natural and pro-
duction systems. Because rare species face greater danger of extinc-
tion, species evenness, a measure of how similar abundances are
across species in a community, is seen as a key component of biodiver-
sity. However, previous studies have failed to find a consistent associ-
ation of species evenness with species survival and biomass produc-
tion. Here we provide a theoretical framework for the relationship
among these three elements. We demonstrate that the lack of consis-
tent outcomes is not an idiosyncratic artifact of different studies but
can be unified under one common framework. Applying a niche the-
ory approach, we confirm that under demographic stochasticity even-
ness is a general indicator of the risk of future species extinctions in a
community, in accordance with the majority of empirical studies. In
contrast, evenness cannot be used as a direct indicator of the level
of biomass production in a community. When a single species dom-
inates, as expressed by the constraints imposed by the population dy-
namics, biomass production depends on the niche position of the
dominating species and can increase or decrease with evenness. We
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demonstrate that high species evenness and an intermediate level of
biomass production is the configuration that maximizes the average
species survival probability in response to demographic stochasticity.

Keywords: biodiversity, competition systems, demographic stochas-
ticity, ecosystem functioning, niche theory, species coexistence.

Introduction

Biodiversity is a central concern in conservation, in part due
to its relationship with ecosystem processes, such as bio-
mass production (Margalef 1963; Odum 1969; Tilman et al.
1996; Chapin et al. 2000; Loreau 2010; Vellend et al. 2013).
This relationship has even generated interest as a means
to augment biomass in production systems, such as planta-
tion forests (Erskine et al. 2006). However, biodiversity has
traditionally been measured in these studies as species rich-
ness (Hooper et al. 2005), whereas the majority of species
in a community are normally found to occur in low abun-
dance, with only a few being extremely common (Preston
1948; Tokeshi 1990; Chapin et al. 2000; Sugihara et al. 2003).

Because rare species might be more vulnerable to de-
mographic stochasticity under environmental stress, an
equally relevant index of biodiversity is species evenness,
that is, how similar abundances are across species (Levins
1968; Margalef 1968; Odum 1969; Chapin et al. 2000;
Stirling and Wilsey 2001). Furthermore, species evenness
may respond more rapidly to environmental changes than
does richness (Chapin et al. 2000), so researchers have hy-
pothesized that changes to species evenness may be a good
indicator of the risk of future species extinctions in a com-
munity (Odum 1969; Chapin et al. 2000; Halloy and Bar-
ratt 2007). This hypothesis has also been supported exper-
imentally by several studies (see table Al; tables A1, A2 are
available online).



412 The American Naturalist

Despite its potential utility as a measure of ecosystem
state, research testing the influence of species evenness on
ecosystem functioning has found more variable results than
that for richness (Hillebrand et al. 2008), although the ma-
jority of these effects have been positive (see table A2). Al-
though positive effects of species evenness on biomass pro-
duction have been shown both theoretically (Nijs and Roy
2000) and empirically (Wilsey and Potvin 2000; see table A2),
abiotic drivers of evenness (or of its reciprocal, dominance)
may reverse this relationship (Mulder et al. 2004). For ex-
ample, abundant resources can promote competitive dom-
inance by a few species and lead to reduced species richness
and higher growth rates (Laliberté et al. 2013), in accor-
dance with theory (Huston 1979). When abiotic stress sub-
sequently reduces this dominance, the resulting increase in
evenness may be associated with lower biomass production
(Wardle et al. 1997). Theoretical (Norberg et al. 2001) and
experimental (Wittebolle et al. 2009) results suggest that
systems with low species evenness may be less resistant to
stress induced by environmental change. This suggests that
there may be an intricate balance between competition (via
its effect on species evenness), community persistence, and
ecosystem functioning. Yet the nature of this relationship
remains a major conceptual challenge (Wittebolle et al.
2009).

Given the prominent role played by species evenness in
both the persistence and the productivity of communities,
we build a conceptual framework based on niche theory
whereby these axes can be viewed simultaneously, with the
hope that this approach will shed light on apparently contra-
dictory results. Our aim is to study the relationship among
these three properties under a Lotka-Volterra framework
and under the constraints imposed by the differential equa-
tions describing the population dynamic. In particular, to
estimate species survival probability, we assumed stochastic
noise in the demographic parameters. While our approach
is focused exclusively on the relationship between commu-
nity evenness and species survival probability, we also search
for general patterns of context dependency by examining
the conditions under which a competition hierarchy would
be expected to generate a trade-off between productivity and
evenness rather than a positive relationship between these
two ecosystem measurements.

The article is organized as follows. First, we explain our
theoretical framework based on niche theory. Second, we
explain how we calculate species evenness, community bio-
mass, the average survival probability of species under sto-
chastic noise in demographic parameters, and the link
among the three of them. Third, we explain how to disen-
tangle the role played by species evenness and biomass pro-
duction in shaping species survival probability under de-
mographic stochasticity. Finally, we explore the outcomes
of our framework and discuss their implications.

Methods
Theoretical Framework

Our theoretical framework of population dynamics is based
on the generalized Lotka-Volterra competition model de-
rived from niche theory (MacArthur and Levins 1967;
Levins 1968; Svirezhev and Logofet 1983; Logofet 1993;
Loreau 2010; Saavedra et al. 2014). Mathematically, the dy-
namical model is given by

S
T
= EiN,. (K, —;a,jN,), (1)

where variable N; > 0 denotes the biomass of species i. The
parameters are as follows: r; > 0 represents the growth rate
of species i, K; > 0 indicates the carrying capacity of species
i (i.e., the biomass at equilibrium in monoculture), and
a; > 0 indicates the niche overlap between species i and j,
which gives the competitive effect of species j on species i.

Assuming a D-dimensional niche space and that each
species’ niche is represented by a multivariate Gaussian-like
function, the niche overlap between two species («;) can be
expressed as a function of their distance in the niche space
(MacArthur and Levins 1967; Levins 1968; Svirezhev and
Logofet 1983; Logofet 1993):

av,
dt

a; = exp(—d;/40%), (2)

where o is the niche width (assumed to be the same for all
species and in all of the D-dimensions of the niche space)
and d; is the distance between species i and species j. The
pairwise niche distances are computed by d; = ||p;: — |,
where the vector p, gives the position of species i in the niche
space. By definition, we have a; = 1, so that in the absence
of pairwise niche overlap (or equivalently when species are
in monoculture) each species reaches its own carrying ca-
pacity at equilibrium (Levins 1968).

Note that without loss of generality, we can rewrite equa-
tion (1) in the form dN;/dt = N,(r; — >_;A;N,), where A;
is the competition strength matrix and is linked to the niche
overlap matrix by A; = r;/K,cy;. The matrix A; is in general
asymmetric (because r; and K; are different among species)
and expresses the per capita effect of species j on the per
capita growth rate of species i. The elements of the niche
overlap matrix o; are dimensionless, while the competition
strength has units time ™' biomass ™ or (time™' abundance ™).
This expression can be generalized, without changing qualita-
tively the results, to incorporate species dependence on the
width and amplitude of the niche curve (app. B; apps. A-C
are available online).

Importantly, a niche-based competition model has two
advantages for a theoretical framework, one technical and
one conceptual (Case 1990). The technical advantage is that
in a Lotka-Volterra model (eq. [1]) based on a competition



matrix («) derived from a niche space (e.g., eq. [2]), the tra-
jectory of the dynamical system will converge to a unique
globally stable equilibrium point (independent of the initial
conditions). This is the consequence of the niche overlap
matrix being inevitably Volterra dissipative (Volterra 1931;
Svirezhev and Logofet 1983; Logofet 1993). Therefore, if
one randomly generates an interaction matrix a by sam-
pling randomly the niche positions and then computing
the pairwise niche overlap elements, the biomass values at
equilibrium are dictated only by the carrying capacities
and not by the intrinsic growth rates (Saavedra et al. 2014),
and that equilibrium point is globally stable. In contrast, if
one generates a competition matrix by drawing directly the
niche overlap at random, then the global stability property
is not granted anymore. The conceptual advantage is that
by calculating the competition coefficients derived from a
niche overlap framework rather than drawing them directly
at random, one can provide a clear biological and mecha-
nistic interpretation based on competition for common re-
sources.

Species Evenness

Species evenness is a measure of how equally biomass is dis-
tributed among species in a given community. Tradition-
ally, species evenness is calculated as the Pielou index by
>_ipilogp,

= (3)

J= log S

where p; = N;/>",N; is the fraction of species i’s biomass
(from the total biomass in the community) and $ is the total
number of species in the community. Species evenness, de-
fined for S > 1, takes values in [0, 1], where a value of 1 in-
dicates that all species are equally abundant and a low value
indicates that the community is dominated by a few or a sin-
gle species.

Community Biomass

In the presence of interspecific competition, the total bio-
mass of a community at the steady state of a Lotka-Volterra
model (eq. [1]) is less than the sum of all the carrying capac-
ities of the constituent species. The ratio between the total
biomass at equilibrium and the sum of all carrying capaci-
ties can be used as a proxy for the relative biomass produc-
tion in a community. This ratio is computed as

2N
P ===
2K
The ratio P is dimensionless and represents the fraction of

potential biomass production achieved in the presence of in-
terspecific competition. Our intent in using this ratio, rather

(4)
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than simply summed biomass, is to account for inherent
productivity differences across communities and thereby
allow these results to be comparable across different distri-
butions of species biomasses (Cardinale et al. 2006). For
example, some species may naturally occur at low biomass
because they have specialized niches, tend to occur in low-
resource environments, or never achieve a large size. In-
creasing evenness may also appear to lead to an augmenta-
tion in biomass, simply because it involves an increase in the
carrying capacity of species that have a low biomass. Our
use of relative biomass therefore measures the competition-
limited biomass of such species relative to their biomass in
the absence of competition and is akin to the measure used
to assess overyielding (the change in biomass beyond that ob-
tained by each species in isolation) in biodiversity-productivity
studies (Loreau 1998; Cardinale et al. 2006; Hector and Bagchi
2007).

Average Survival Probability of Species
under Demographic Stochasticity

To obtain an estimation of the survival probability of any
species in a community, we calculated the average fraction
of surviving species under demographic stochasticity. Spe-
cifically, for a given community represented by a niche over-
lap matrix («) and a given biomass distribution N”, this av-
erage survival probability is calculated in the following way.

First, given @ and N', we compute the corresponding
vector of carrying capacitiesby K = «N'. This vector of car-
rying capacities is the one that makes the Lotka-Volterra
model (eq. [1]) converge to the biomass distribution N* at
equilibrium. Our theoretical framework assumes that the
biomass distribution, the niche overlap matrix, and the car-
rying capacities are constrained by the equation for the
community dynamics.

Second, we mimic demographic stochasticity by introduc-
ing random and proportional variations to the calculated
vector of carrying capacities K. This is done by multiplying
each of the vector elements by a lognormal random number
of mean 0 and standard deviation 0.3, 0.1, and 0.01 for a high,
medium, and low level of environmental stochasticity, re-
spectively. Note that this simulated environmental stochasti-
city on the carrying capacities is equivalent to simulated
stochasticity on the intrinsic growth rate, as the carrying ca-
pacity in a competitive framework is given by the ratio be-
tween the intrinsic growth rate and the fixed intraspecific
competition.

Finally, using these perturbed vectors of carrying capac-
ities, we computed the fraction of surviving species at the
steady state of the Lotka-Volterra model (eq. [1]). To obtain
an estimation of the average survival probability of species,
we repeated steps two and three 200 times and computed
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the average fraction of surviving species under demographic
stochasticity.

Linking Evenness, Biomass Production,
and Species Survival Probability

To study the theoretical link among species evenness, bio-
mass production, and survival probability of species in any
given community represented by a niche overlap matrix a,
we took an approach of exploring as exhaustively as possi-
ble the biomass production-evenness space and estimating
the survival probabilities. This approach followed three steps.

First, we randomly generated the niche position of each
species in a two-dimensional niche space and computed
the niche overlap matrix & (eq. [2]). The two coordinates
of each species were sampled uniformly between 0 and 1.
The niche width was chosen such that the average interspe-
cific niche overlap was within the range [0.05,0.3]. The re-
sults are qualitatively robust to changes in the dimension of
the niche space (results not shown).

Second, because our aim is to study the association im-
posed by the Lotka-Volterra model of species survival prob-
ability with biomass production and species evenness for a
fixed number of species S, we generated a full gradient of
species evenness from almost 0 to 1. To achieve such a gra-
dient we could have randomly sampled vectors of carrying
capacities and then computed the biomass of the species at
the equilibrium point of the Lotka-Volterra model. How-
ever, for many of these simulated vectors of carrying capac-
ities, the equilibrium point would have few or many species
extinct. Then these vectors of carrying capacities leading to
species extinction would need to be disregarded. This, of
course, would represent a considerable amount of compu-
tational time. Therefore, to achieve our gradient of even-
ness efficiently from a computational perspective, we de-
cided to first generate the distributions of biomass and then
compute their corresponding vector of carrying capacities
(expressed by the equation K = aN"). These biomass distri-
butions were sampled from a lognormal distribution of loca-
tion parameter 0 and scale parameter drawn uniformly be-
tween 0 and 5. Note that our biomass sampling procedure
explores intensively the full domain of potential biomass
distributions and, consequently, the full domain in the pa-
rameter space of carrying capacity compatible with coexis-
tence. Therefore, our findings are general because they do
not depend on a specific parameterization of demographic
parameters (Rohr et al. 2014). We sampled 20,000 species
biomass distributions.

Finally, for each niche overlap matrix (e) and each gen-
erated distribution of species biomass (N*), we computed
the corresponding level of species evenness (eq. [3]), relative
biomass production (eq. [4]), and average species survival
probability under demographic stochasticity.

Feasibility Analysis

To understand the role played by species evenness and bio-
mass production in shaping the average species survival
probability, we studied the feasibility domain of each sim-
ulated community (Svirezhev and Logofet 1983; Logofet
1993; Rohr et al. 2014; Saavedra et al. 2014, 20164, 2016b).
In this context, the feasibility domain corresponds to the
domain in the parameter space of carrying capacities com-
patible with the survival of all species, that is, given « it is
the set of carrying capacities such that their equilibrium
points under the Lotka-Volterra model (eq. [1]) yield solu-
tions where all species have a strictly positive biomass, N; >
0. Outside this domain, there is no set of carrying capacities
leading to the survival of all species. Mathematically, the
feasibility domain is defined by

Di(a) = {Ke R§0|there exist N'with N; >0

) (5)
such that K = aN }

If one chooses a vector of carrying capacities (K) inside
that domain, then by definition the Lotka-Volterra model
(eq. [1]) converges to a positive equilibrium point given by
N = o 'K.

The feasibility domain of a niche overlap matrix a is geo-
metrically represented by an algebraic cone in the space of
carrying capacities (Svirezhev and Logofet 1983; Logofet
1993). A vector of carrying capacities close to its border
is, by definition, more at risk of species extinction under de-
mographic stochasticity. That is, the chances that a stochas-
tic perturbation pushes the vector of carrying capacities
outside the domain of feasibility (which implies that at least
one species is becoming extinct) is larger for vectors closer
to the border. Therefore, to increase the average survival
probability, one possibility is to locate the vector at the cen-
ter of the feasibility domain. Note that the geometric cen-
troid of the cone describing the feasibility domain is one pos-
sible center. This geometric centroid, defined by the so-called
structural vector K*(«) (Rohr et al. 2014; Saavedra et al. 2014),
canbe computed on the basis of the elements of the niche over-
lap matrix by the following formula:

Ki(e) = Z—Zi"ﬂk, (6)

For any vector of carrying capacities K, we calculate its de-
viation from the centroid K%(a) by the angle between the
two vectors (Rohr et al. 2014; Saavedra et al. 2014). This de-
viation is computed on the basis of the scalar product:

= KK

0 = arccos ’
<\/Z’S=1K’2\/sz=1(K,s)z> (7)




We stress that the notions of feasibility domain, structural
vector, and deviation provide a mechanistic understanding
of the dynamics of the community as a whole and are con-
tained in the Lotka-Volterra model (eq. [1]). The average
survival probability cannot be deduced directly but requires
simulations and the addition of demographic stochasticity
for its estimation.

Results

To explore the relationship among species survival proba-
bility, species evenness, and biomass production, we con-
structed randomly assembled communities of 10, 15, 20,
25, and 30 species. For each level of species richness, we gen-
erated communities with an average interspecific niche over-
lap within the range of [0.05,0.3]. For other overlap values,
the results are qualitatively equivalent. For each niche over-
lap matrix, we sampled communities spanning the whole
range of species evenness. Finally, for each generated com-
munity we explored three levels of stochastic noise (stan-
dard deviation of 0.01, 0.1, and 0.3) on the demographic
parameters to estimate survival probabilities.

Species Evenness and Survival Probability

We found a positive and strong relationship between the
level of species evenness and the average survival probabil-
ity of each species (fig. 1A). Note that the actual values of
survival probability are completely dependent on the pa-
rameters used for the community and perturbations. Im-
portantly, the level of random perturbations does not change
the relationship between species evenness and survival prob-
ability, and this pattern is highly reproducible in simulated
communities of different sizes and is characterized by differ-
ent average niche overlap (figs. S1-S15; figs. S1-S44 are avail-
able online). It is worth mentioning that an increase in the
average niche overlap always results in an overall decrease
in the average survival probability, keeping fixed the num-
ber of species and the level of demographic stochasticity
(figs. S16-S20). This negative relationship between niche
overlap and survival probability is perfectly in line with pre-
vious studies showing that an increase in competition results
in a decrease in the feasibility domain (Vandermeer 1970;
Bastolla et al. 2005; Saavedra et al. 2014). We also explored
community evenness using the Simpson index (figs. S36-
S44), and the results are qualitatively equivalent. In general,
these findings reveal that community evenness is directly
and positively linked to the likelihood of species survival, pro-
viding a theoretical justification for the use of evenness as a
proxy for the probability of future species extinctions under
demographic stochasticity (Odum 1969; Chapin et al. 2000;
Halloy and Barratt 2007).
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Species Evenness and Biomass Production

In contrast to the direct relationship between species even-
ness and survival probability, we found a multidirectional
relationship between species evenness and relative biomass
(fig. 1B). Figure 1B shows that at the maximum level of spe-
cies evenness, relative biomass is at an intermediate level
compared with its total possible range. When species even-
ness decreases from this maximum, relative biomass can ei-
ther increase or decrease. Specifically, if the species that has
the lowest average niche overlap with the other species
(computedasa; = (3_;#,0)/(S — 1)) dominates the com-
munity, a decrease in species evenness implies an increase
in relative biomass. Alternatively, if the dominating species
has a high average niche overlap, the relative biomass de-
creases with declining evenness (fig. 1B). It can be mathe-
matically proven that lower average niche overlap of the
dominating species leads to large relative biomass and vice
versa (see app. C for the mathematical proof). This implies
that species evenness cannot be used as a direct predictor of
the relative biomass of a community. In a community dom-
inated by a single species, the relative biomass depends on
the niche overlap of the dominating species and can thus in-
crease or decrease with evenness. These results are robust to
the change in species richness and average niche overlap
(figs. S1-S15).

The computer code for reproducing the simulations can
be downloaded from the Dryad Digital Repository: http://
dx.doi.org/10.5061/dryad.sp45r (Rohr et al. 2016).

Theoretical Explanation for the Link among Evenness,
Biomass Production, and Survival Probability

In this section, we first explain why the positive relationship
between evenness and survival probability should be theo-
retically expected. Then we show how the deviation from
the centroid of the feasibility domain of a community can
be used to disentangle the relationship between species even-
ness and biomass production.

We start by providing an illustrated example of the feasibil-
ity domain and its implications for the average survival prob-
ability of species. Figure 2A represents the algebraic cone of
the feasibility domain. Each axis corresponds to the carrying
capacity values of a species (parameter space), which define
the solution of the system (state space; Svirezhev and Logo-
fet 1983; Logofet 1993; Saavedra et al. 20164, 2016b). The
cone is generated by the three blue vectors, which provide
the limits of the feasibility domain. The dashed vector rep-
resents the centroid of the feasibility domain (the structural
vector). Figure 2B shows a two-dimensional slice of the cone
in figure 2A. The outer triangle (gray) corresponds to the to-
tal domain of carrying capacities and is split into seven do-
mains. The inner triangle (red) corresponds to the feasibility
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Figure 2: Graphical representation of the feasibility domain. A corresponds to the projection of the community shown in figure 1 on a subset
of three randomly chosen species. The three black axes represent the full domain of carrying capacities. The angle formed by the three blue
lines corresponds to the algebraic cone of the feasibility domain, that is, the subset of carrying capacities leading the positive biomass for the
three species at the stable steady states of the Lotka-Volterra model. The dashed line in the middle (green) corresponds to the centroid of the
feasibility domain (structural vector). To simplify the representation of the feasibility domain, we can take a slice of the full domain. This slice
is represented by the outer gray triangle. The red inner triangle is the corresponding slice of the feasibility cone. B is a two-dimensional
representation of the slice of A. The outer gray triangle is split into seven domains. The inner red triangle represents the feasibility domain
(the three species have positive biomass at equilibrium), while in the other six domains at least one species becomes extinct. The identity of
the surviving species is given by the numbers inside the domain. Note that the slice is the projection of the full space on the unit simplex, that
is, where the sum of the carrying capacity is equal to 1. Therefore, the slice is a complete representation of carrying capacities space up to a

scaling factor.

domain, where all three species survive (a larger feasibility
domain indicates a greater range of parameters leading to a
positive solution). In the other six domains, at least one spe-
cies becomes extinct. The identity of the surviving species is
given by the number(s) inside the corresponding domain.
Each blue dot at the border of the feasibility cone represents
the limit at which one of the three species is fully dominating
the system; the green symbol in the middle corresponds to the
centroid of the feasibility domain.

Importantly, these figures allow us to provide a theoret-
ical explanation for the positive relationship between even-
ness and survival probability, as follows. As explained in
the feasibility analysis section, a vector of carrying capac-
ities located closer to the border of the feasibility domain
is more at risk, under demographic stochasticity, of species
extinctions. Therefore, it should be theoretically expected
that the closer a vector of carrying capacities is to the bor-
der of the feasibility domain, the lower will be the aver-
age survival probability of the species. Figure 3A represents
the same feasibility domain as in figure 2B, where the heat
map inside the triangle now shows the average survival
probability of species. This figure confirms our theoretical
expectation.

Similarly, the closer the vector of carrying capacities is
located to the border of the feasibility domain, the lower the
level of species evenness (fig. 3B). This is true because at the
borders, by definition, one or more species are on the brink
of extinction and have very low biomass compared with the
others. For instance, the extreme case is when a vector is lo-
cated at one of the corners of the feasibility domain (blue
dots on fig 2B). In that case, one species completely dom-
inates the system, and species evenness is close to 0. The
heat map inside the feasibility domain of figure 3B shows
that as soon as we start moving away from the centroid of
the feasibility domain, the level of species evenness starts
to decrease. This confirms again our theoretical expecta-
tion.

In contrast, figure 3C confirms that there is a very differ-
ent pattern for community biomass. The figure shows the
same representation as figure 3A and 3B, but this time the
heat map inside the triangle corresponds to the relative bio-
mass. This shows that the direction taken from the centroid
of the feasibility domain plays an important role in deter-
mining the level of community biomass. The community
biomass will be maximized (minimized) if the deviation
from the centroid moves toward the species with the lowest
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(largest) average niche overlap. See appendix C for a math-
ematical demonstration.

Extending the three-species illustration to the entire com-
munity, figure 4 shows the relationship among deviation
from the centroid of the feasibility domain, species even-
ness, and relative biomass production. First, as expected,
the figure shows a clear negative relationship between spe-
cies evenness and the deviation from the centroid of the
feasibility domain. Second, the figure confirms that high rel-
ative biomass production is inevitably associated with a low
level of species evenness and high deviation from the cen-
troid of the feasibility domain. This pattern is highly re-
producible in any arbitrarily simulated community of any
given size and level of average interspecific niche overlap
(figs. S21-S35).

These findings confirm that the centroid of the feasibility
domain of a niche-competition community (the configura-
tion that allows the largest demographic stress without spe-
cies extinctions) can be achieved only with high species
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evenness and an intermediate level of relative biomass.
Moreover, these theoretical findings suggest that species
evenness can be the result of a fundamental trade-off be-
tween species survival probability (or deviation from the
centroid of the feasibility domain) and community bio-
mass. In our setting, this trade-off is imposed by the popu-
lation dynamic. As a consequence, it is not possible to reach
ahigh relative biomass while assuring a low extinction prob-
ability in the community.

Discussion

Previous studies have failed to find a consistent relationship
between species evenness and biomass production (see ta-
ble A2 for a detailed review of the topic). Our results dem-
onstrate that these mixed outcomes are not idiosyncratic
artifacts of different studies but rather represent equally
plausible community trajectories under demographic sto-
chasticity. These trajectories are associated with declining

Deviation from the center of the feasibility domain

o } t t
0.0 0.2 0.4 0.6
Evenness

Figure 4: Disentangling the effects of species evenness and biomass production on species survival. The figure shows the relationship among
deviation from the centroid of the feasibility domain, species evenness, and relative biomass for the full community shown in figure 1. The
larger the deviation is, the lower the average species survival probability under demographic stochasticity. This illustrates that both species
evenness and relative biomass production are the result of a given level of deviation of the community from the centroid of its feasibility
domain. Each point represents a randomly generated distribution of species biomass. This pattern is highly reproducible in any arbitrarily
simulated community of any given size and level of average niche overlap (see supplemental figures).
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species evenness. They have the largest positive slope in
communities that achieve maximal relative biomass pro-
duction as a result of the low niche-competitive effect of
the dominating species on the other species in the commu-
nity. Conversely, they have a negative slope if the dominant
species is in strong competition with the rest of the commu-
nity. Although there are many ways to be uneven (i.e., dif-
ferent species could dominate to different extents), high
evenness requires all species to occur at similar abundances,
and this provides more consistent outcomes for persistence
and productivity, which can be visualized as the declining
variance in survival probability and relative biomass with
increasing evenness in figure 1.

Some empirical support exists for our finding that the
evenness-productivity relationship should be more positive
when the dominant species has a high niche overlap with
(i.e., a high competitive effect on) the rest of the community.
Nyfeler et al. (2009) found that the evenness-productivity
relationship was consistently positive, but its slope declined
with added nitrogen (i.e., reduced resource competition).
Similarly, studies that compared experimental treatments
of tall plants only (high niche overlap) with a mixture of tall
and short plants (lower niche overlap) have found more pos-
itive evenness-productivity relationships in the high niche
overlap treatment (i.e., all plants tall; Isbell et al. 2008; Huang
etal. 2013). This may partly explain previous inconsistencies
in the relationship between evenness and productivity found
in empirical studies (table A2).

The insurance hypothesis (Yachi and Loreau 1999) pos-
its that high species richness buffers community responses
to perturbation. Superficially, this may suggest that produc-
tion can be maximized by adding to a single dominant a
number of species at low abundance that act as a buffer.
In contrast, our results demonstrate that for a given level
of species richness, any system dominated by a single or a
few species (low evenness) is operating at the brink of ex-
tinction of one or more species, such that this buffer will
erode over time. Thus, conservation of biodiversity within
production systems would appear, from our results, to be
least effective when the system is dominated by a single
highly productive species, and diverse plantings may there-
fore benefit associated self-colonizing biodiversity as well
as production (Erskine et al. 2006).

High species evenness has long been known to character-
ize natural communities (Odum 1969), and this has led to
its widespread use as a measure of disturbance. We have
demonstrated that declining evenness is also a general indi-
cator of further species extinctions, and this result is highly
reproducible across different niche-competition communi-
ties. As plants are basal species in many food webs, our
results raise a number of interesting questions about the ex-
tent to which unevenness in plants may indicate decreasing
tolerance to perturbations at higher trophic levels and how

declining evenness with increasing perturbation may affect
food-web structure by altering frequencies of species en-
counter. An interesting hypothesis would be that distur-
bance generates low species evenness at multiple trophic
levels and that this would lead to more frequent interactions
involving dominant species and the loss of interactions
among rare species. Such a hypothesis would be congruent
with observed and simulated changes to species interaction
networks under global change drivers, such as invasion
(Aizen et al. 2008), land-use intensification (Tylianakis et al.
2007), changes in interaction strengths (Tylianakis et al.
2008; Saavedra etal. 2013), and climate warming and nitro-
gen deposition (de Sassi et al. 2012), and it requires further
exploration. Furthermore, we have assumed that species
evenness is only a function of changes in demographic
characteristics. Future work should also explore the extent
to which species turnover, migration, changes in interspe-
cific interactions, and long-term dynamics, among other
factors, affect the relationship of species evenness with spe-
cies survival probability and biomass production. However,
these new potential studies should not forget that, without
disentangling the competitive effects in these communities,
analyses can lead to misleading results.
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Appendix A from R. P. Rohr et al., “Persist or Produce: A Community

Trade-Off Tuned by Species Evenness”

(Am. Nat., vol. 188, no. 4, p. 000)

Compiled Empirical Studies

Table Al: Overview of results from studies that have examined the relationship between species evenness and species persistence

Study

Response variable

Relationship with
species evenness

Study system

Details

Wilsey and Polley
2004

Wills et al. 2006

Isbell et al. 2008

Huang et al. 2013

Collet et al. 2014

Persistence

Persistence

Persistence

Persistence

Persistence (coexistence
of both tree species)

Positive (extinction rates in
second year higher with low

evenness, as rare species
with low growth rates
became extinct)

Positive (rare species have

higher survival rate than
common species, which in
turn promotes diversity
maintenance)

Positive (although species

richness declined only in

lowest evenness treatment)

Positive in tall plots (high

niche overlap) but not in
dissimilar-height plots

No relationship

Grassland plant
communities

Forest plant
communities

Tallgrass prairie plants in
an abandoned pasture
(six species)

Grassland plants
Two tree species (Fagus

sylvatica and Acer
pseudoplatanus)

Experiment manipulating rank
abundance slopes at fixed rich-
ness and biomass; same species in
high and low evenness treatments;
mix of C; and C, grasses and
forbs

Census data from seven tropical
forest dynamics plots

Experimental plots with initial
evenness and richness manipu-
lated; plant height (tall vs. dis-
similar) also manipulated

Field experiment manipulating plant
diversity and height classes

Twelve-year-old experimental tree
plantation

Note: In summary, four of five studies found a positive relationship between species evenness and species persistence, while one study found no relationship.

Table A2: Overview of results from studies that have examined the relationship between species evenness and productivity

Study

Response variable

Relationship with
species evenness

Study system

Details

Tracy and Sanderson

2004
Schmitz et al. 2013

Nyfeler et al. 2009

Kirwan et al. 2007

Percent forage cover

Aboveground biomass

Aboveground biomass

Total aboveground
biomass

Positive

Positive effect of planted

evenness declined over time

as realized evenness de-
clined; consistent positive
effect of realized evenness

Positive

Positive in 25 of 28 sites

Pasture plants

Grassland plants

Grassland plants

Grassland plants

Survey of pasture plants (identity
not provided)

Experiment manipulating even-
ness at fixed richness; species
were made dominant at ran-
dom by planting density

Experiment manipulating even-
ness at fixed richness; species
were made dominant at ran-
dom by planting density; ef-
fect greatest when proportions
of grasses and legumes are
even but also significant
within grasses or legumes

Experimental manipulation of
four species at 28 European
sites
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Table A2 (Continued)

Study

Response variable

Relationship with
species evenness

Study system

Details

Ribas et al. 2015

Hillebrand and

Lehmpfuhl 2011

Collet et al. 2014

Zhang et al. 2012

Stevens and Carson
2001

Mattingly et al. 2007

Sagar and Singh 2006

Wilsey and Potvin
2000

Wilsey and Potvin

2004

Brassard et al. 2013

Assaf et al. 2011

Huang et al. 2013

Polley et al. 2003

Aboveground biomass

Resource use efficiency

(RUE, biomass per
unit P)

Stand productivity
(measured as tree
height and stem
diameter)

Aboveground produc-

tivity

Total annual cover

Above- and below-
ground biomass
production

Tree basal area

Total, above-, and be-
lowground biomass

Peak aboveground bio-

mass and root biomass

Fine root biomass
of trees

Aboveground biomass

Peak aboveground
biomass

Net biodiversity effect
(productivity of
mixtures relative to
monocultures)

Positive

Positive (in absence of
consumers) but depended
on N:P ratio

Positive

Positive

Positive

Positive

Positive

Positive for total and below-
ground; aboveground varied
with identity of dominant
species

None for peak aboveground
biomass, positive for shal-
low root biomass, positive
richness x evenness inter-
action for deep roots

Positive for annual root pro-
duction, but effect was most
apparent during summer
months, with low to no ef-
fect in spring and fall

Positive in managed
grasslands, no relationship
in natural grasslands

Positive in plots planted only
with tall plant species, no
relationship in plots with tall
and short plant species
combined

Positive effect in only two of
siX species pairs

Forage plant communi-
ties

Phytoplankton

Two tree species (Fagus
sylvatica and Acer
pseudoplatanus)

Forests

Successional plant

community

Plant communities

Tree communities

Old field plants

Grassland plants

Boreal forest

Grassland plants

Grassland plants

Grassland plants

Field experiment using three
species at three treatments:
monocultures, even mix, or
uneven (one species at 80%)
mixtures

Experimental metacommunity,
where evenness and richness
were altered by varying N and
P supply

Twelve-year-old experimental
tree plantation

Meta-analysis of 54 diversity-
productivity studies in forest
systems, both planted and
natural

Observational study of form-
dominated community 15
years after abandonment of
agriculture

Greenhouse experiment manipu-
lating evenness of US native
prairie grassland species

Observational study of tropical
dry forests

Experimental manipulation of
evenness and identity of dom-
inant plant; species composi-
tion (three species) held con-
stant

Experiment manipulating rank
abundance slopes at fixed
richness and biomass; same
species in high and low even-
ness treatments; mix of C; and
C, grasses and forbs

Natural stands dominated by
coniferous or broadleaved
species

Field observations of agricultur-
ally managed and natural
grasslands

Field experiment manipulating
plant diversity and height
classes

Field experiment with two grass
and two forb species
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Table A2 (Continued)

Study

Response variable

Relationship with
species evenness

Study system

Details

Isbell et al. 2008

Mischkolz et al. 2016

Chalcraft et al. 2009

Gamfeldt and
Hillebrand 2011

Pineiro-Guerra 2014
Lemieux and Cusson
2014

Larpkern et al. 2011

Mouillot et al. 2005

Napoleon et al. 2014

Aboveground biomass

Aboveground biomass

Aboveground biomass

Resource use efficiency
(RUE, biovolume per
unit P)

Biomass

Net and gross primary
productivity, commu-
nity respiration

Aboveground biomass
(plant height and di-
ameter)

Volumetric abundance
(volume of all parasite
species per individual
host)

Maximum primary pro-
duction and maximum
productivity

No main effect of evenness, but
interaction with plant height;
marginally significant posi-
tive relationship when there
was a dissimilarity in height

No effect

Positive, negative, and no ef-
fect; response varied across
the six sites and between
years

No effect

No effect overall

No effect on any measure

Negative for adult woody spe-
cies, no relationship with
saplings

Negative (logarithmically de-
creasing)

Negative (parabolic) relation-
ship for primary production,
no relationship with produc-
tivity

Tallgrass prairie

Macrophytes in ephem-
eral ponds
Grassland plants

Algae

Macrophytes in ephem-
eral ponds

Benthic intertidal habitat-
forming species
(macroalgae and
mussels)

Bamboo deciduous and
mixed deciduous for-
est

Metazoan parasite com-
munities on 15 species
of marine fish

Natural marine phyto-
plankton communities

Experimental plots with initial
evenness and richness manip-
ulated; plant height (tall vs.
dissimilar) also manipulated

Observational study of natural
ephemeral ponds

Observational study of six sites
along productivity gradient

Experimental aquatic
metacommunities

Observational study of natural
ephemeral ponds

Field experiment in intertidal
zone of estuary

Observational study that focused
on effect of productivity on
evenness

Adult fish sampled from coastal
Chile, dissected for parasites

Natural marine phytoplankton
communities

Note: In summary, 12 of 26 studies found a positive relationship between biomass production and evenness; eight studies found mixed outcomes, three found no relation-
ship, and three found a negative effect.
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Appendix B from R. P. Rohr et al., “Persist or Produce: A Community
Trade-Off Tuned by Species Evenness”
(Am. Nat., vol. 188, no. 4, p. 000)

Generalized Niche Overlap Matrix

Here we generalize equation (2), which computes the niche overlap between two species. Generally, we can assume
that a D-dimensional niche of a species is represented by a multivariate Gaussian-like function with a different width

in each dimension (g, ..., oy). This set of niche width values is species dependent, and the amplitude of the niche curve is
also species dependent (a;). Therefore, a generalized niche function is given by the following equation:
. Ay () — ,U«l)2 (e — ,Mv/v)2
(x) = exp|— — e, Bl
Ji6) @2n)"0,-0y p( 207 20% (B1)
where p,, ..., py is the position of the species in the N-dimensional niche space.

Following this general niche curve function, we can also compute a generalized formula for the niche overlap between
two species 7 and j. It is given by

oy = L1 ) dx
Jfi0)f i(x) dx (B2)
_ 20, 2oy _ (i — 1) o (wy — 7v)’
N ET AN T ( 2(0f + ) 2o} + m)’
where (uy, ..., py), (01, ..., 0y), and a, are the niche position, niche width, and niche amplitude for species i, respec-
tively, and (74, ..., 7y), (v, ..., Uy), and a; are the niche position, niche width, and niche height for species i, respectively.

Note that this generalized formula allows us to generate asymmetric niche overlap matrices. The qualitative results
of the article hold when using niche overlap matrices generated from equation (B2) instead of equation (2) (results not
shown).
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Appendix C from R. P. Rohr et al., “Persist or Produce: A Community
Trade-Off Tuned by Species Evenness”
(Am. Nat., vol. 188, no. 4, p. 000)

Relative Biomass and Species Dominance

Here we give the mathematical proof that lower average niche overlap of the dominating species leads to higher relative
biomass and vice versa. We start by writing explicitly the system of linear equations linking the vector of carrying
capacities (K) and the biomasses (IV*) at equilibrium:

K| = NT + OllzN; + + alsN;
Kz = O(z]NT + N; + + O(ZSN; (Cl)
KS = aSINT + OlszN; + + N;

Let us assume, without loss of generality, that species 1 is dominating the community. Mathematically, this is equivalent to
studying the limit case where the biomasses of the other species go to 0, that is, N5, N3, ..., Ng—0. In this limit case,
the equations linking the carrying capacity to the biomass are given by

K, = NT
K, = OlleT ) (CZ)
Ky = O‘SINT

By summing these S equations, we obtain the following equation relating the biomass of the dominating species 1 to the
sum of the carrying capacities of all species:

i

YK = (1 - Zaﬂ>N;‘. (C3)

jF1

From this relation, we can analytically derive the relative biomass production of the community with species 1
dominating:

N; 1
P(species 1 dominating) = %I,K[ =717 S-Da’ (C4)
where @, is the average niche overlap of species 1 defined by &; = (3_;#,c:)/(S — 1). This formula can be generalized
to any arbitrary species i dominating the community by

N 1
P(species 1 dominating) = %l Kl TR (C5)
A — by

with &; = (O ;%,;:)/(S — 1). From the last equation we deduce that lower average niche overlap of the dominating
species leads to larger relative biomass. In fact, the relative biomasses when one species dominates are ranked according to
the average niche overlap of the dominating species but in the reverse order.





