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ABSTRACT

Aim To assess how the magnitude of impacts of non-native plants on species
richness of resident plants and animals varies in relation to the traits and
phylogenetic position of the non-native as well as characteristics of the invaded site.

Location Global.

Methods Meta-analysis and phylogenetic regressions based on 216 studies were
used to examine the effects of 96 non-native plant species on species richness of
resident plants and animals while considering differences in non-native species
traits (life-form, clonality or vegetative reproduction, and nitrogen-fixing ability)
and characteristics of the invaded site (ecosystem type, insularity and climatic
region).

Results Plots with non-native plants had lower resident plant (–20.5%) and
animal species richness (–26.4%) than paired uninvaded control plots. Nitrogen-
fixing ability, followed by phylogeny and clonality were the best predictors of the
magnitude of impacts of non-native plants on native plant species richness. Non-
nitrogen-fixing and clonal non-native plants reduced species richness more than
nitrogen-fixing and non-clonal invaders. However, life-form and characteristics of
the invaded sites did not appear to be important. In the case of resident animal
species richness, only the phylogenetic position of the non-native and whether
invaded sites were islands or not influenced impacts, with a more pronounced
decrease found on islands than mainlands.

Main conclusions The presence of a phylogenetic signal on the magnitude of the
impacts of non-native plants on resident plant and animal richness indicates that
closely related non-native plants tend to have similar impacts. This suggests that the
magnitude of the impact might depend on shared plant traits not explored in our
study. Our results therefore support the need to include the phylogenetic similarity
of non-native plants to known invaders in risk assessment analysis.
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INTRODUCTION

The empirical evidence for negative ecological impacts of plant

invasions is mounting (Hulme et al., 2013a). One of the most

prevalent impacts is a reduction in the species richness of the

invaded community (Levine et al., 2003; Powell et al., 2011; Vilà

et al., 2011). Local changes in species richness are important

because biodiversity determines ecosystem production, efficient

use of resources and ecosystem stability (Cardinale et al.,

2006). The positive link between biodiversity and ecosystem
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functioning is challenged by many ecosystems being

invaded by non-native plant species which compete with native

species, reduce the species richness of recipient commu-

nities and therefore often diminish the value of ecosystem

services.

Both the direction (i.e. increase or decrease of a variable)

and the magnitude of impacts of non-native species are highly

context dependent (Hulme et al., 2013a). Disentangling the

factors that determine the magnitude of impacts of non-native

species requires exploring the dependency of impacts on

species traits and ecosystem characteristics (Levine et al., 2003;

Gaertner et al., 2009; Pyšek et al., 2012). Yet, despite the sig-

nificant advance in identifying species traits associated with

the potential of non-native species to invade (i.e. invasiveness;

Pyšek & Richardson, 2007; van Kleunen et al., 2010) and dif-

ferences in the vulnerability of ecosystems to invasion (i.e.

invasibility; Chytrý et al., 2008), the factors modulating

impacts have rarely been explored in concert (Leung et al.,

2012; Pyšek et al., 2012). This is problematic, because there is

no clear link between a species being categorized as invasive

and the magnitude of its impacts (Ricciardi & Cohen, 2007;

Andreu et al., 2009; Hulme, 2012). Thus the countless studies

attempting to identify those traits that make a species invasive

may not translate into a better understanding of the determi-

nants of impact.

When making generalizations about impact-driven traits we

need to consider the phylogenetic non-independence of species

(Sol et al., 2008). Closely related species share morphological,

physiological and ecological traits due to their common evolu-

tionary history (Freckleton et al., 2002). In consequence, the

phylogenetic position of non-native species might influence

their impacts (Yessoufou et al., 2014) because phylogeny cap-

tures phenotypic traits and functional attributes of the species

(phylogenetic signal in functional traits; Blomberg & Garland,

2002). It has been suggested that phylogenetic relatedness

among species should be included in comparative analyses such

as meta-analysis (Chamberlain et al., 2012). Unfortunately,

most meta-analyses addressing the impacts of non-native plants

have failed to account for phylogeny (Liao et al., 2008; Gaertner

et al., 2009; Powell et al., 2011; Vilà et al., 2011; but see

Castro-Díez et al., 2014).

Disentangling the relative importance of ecosystem type,

species traits and phylogenetic relatedness is essential for build-

ing over-arching hypotheses on impacts and developing models

to predict future invasions and their consequences. In a previous

study (Vilà et al., 2011) we quantified the magnitude of the

impacts of invading non-native plants on a wide range of eco-

logical characteristics of resident species, communities and eco-

systems. Here we use a substantially updated database of impact

studies and focus on the effect of non-native plant species on

species richness of plant and animal communities in invaded

sites. To account for context dependence we test whether the

direction and magnitude of impacts varies between trophic

levels, characteristics of the non-native plant and the invaded

site, while accounting for phylogenetic relatedness among the

invading plant species.

METHODS

Literature search and data extraction

We updated the database on studies of the impact of terrestrial

non-native plants on resident plant and animal species richness

used by Vilà et al. (2011). We searched relevant papers on the ISI

Web of Knowledge (http://www.isiwebofknowledge.com) data-

base on 31 August 2012 with no restriction on publication year.

We used the following search term combinations: (plant invader

OR exotic plant OR alien plant OR plant invasion*) AND

(impact* OR effect*) AND (diversity* OR richness* OR com-

petition*). We screened the reference lists from all retrieved

papers for other relevant publications, and we also included

unpublished data from our own teams.

The main selection criterion for a study to be included in the

database was that it quantitatively compared species richness in

plots dominated by a single non-native plant species with a

paired uninvaded control plot. Species richness is defined as the

number of plant or animal species recorded in experimental

plots. Other selection criteria with regard to the type of study

and experimental design are described in Vilà et al. (2011).

From each study, we extracted mean, statistical variation

(usually SE or SD) and sample size of species richness values for

invaded and non-invaded plots. These data were extracted

directly from tables or figures using the datathief ii software

(B. Thumers; http://www.datathief.org) or, in some situations,

by measuring the mean and statistical variation manually using

a ruler. Where it was not possible to extract the data from the

published papers, we obtained them directly from the corre-

sponding authors. Overall we examined 216 case studies on the

impact of 96 non-native plant species on resident plant and

animal richness (Appendix S2 in Supporting Information). This

database includes 170 more cases on 12 additional non-native

plant species than in Vilà et al. (2011).

Statistical analysis

Since shared evolutionary history may lead to the statistical

non-independence of data (Felsenstein, 1985), we combined

meta-analysis and phylogenetic regressions. Meta-analysis takes

into account the between-effect and within-effect size variance

(Gurevitch & Hedges, 1999) whereas the phylogenetic regres-

sion controls for the non-independence between the data points

(Grafen, 1989).

For phylogenetic reconstruction we collated genetic data for

the ribulose-bisphosphate carboxylase (rbcL) gene region for all

non-native plant taxa with available data in the online GenBank/

EBI repository (http://www.ncbi.nlm.nih.gov/). Species with no

DNA data on GenBank/EBI were replaced by closely related

species (within the same genus) for which DNA data were avail-

able (15 species). Our final dataset consisted of 1402 characters

(base pairs) for 96 species. DNA sequence data were aligned in

BioEdit version 7.0.5.3 (Hall, 1999) and manually edited.

Phylogenetic relationships were estimated using Bayesian search

criteria with parameter estimates obtained from the program
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jModelTest version 2.1.3 (best fit model GTR + I + G; Darriba

et al., 2012) in MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003).

MrBayes was run for 1,000,000 generations and trees sampled

every 1000 generations. Nodal support for the retrieved tree

topology was determined as posterior probabilities in MrBayes.

The phylogeny resolved all taxa with high overall support

(Appendix S1).

To incorporate phylogeny in the meta-analysis we followed

the methodology of Dawson et al. (2012). In the meta-analysis

the effect size was calculated as the reduction or increase in

resident plant or animal richness, computed as the log of the

ratio of species richness between invaded and uninvaded plots.

We took into account the phylogenetic autocorrelation of data

by using phylogenetic regression (Grafen, 1989) with Grafen’s

correlation structure (Freckleton et al., 2002). The parameter

adjusts the strength of the correlation induced when assuming a

Brownian motion-like model of trait evolution. The higher the

parameter, the greater the strength of the phylogenetic signal in

the residuals; equal to zero implies that there is no phylogenetic

correlation, and equal to one is equivalent to a Brownian motion

model. In the meta-analysis, each individual effect size has to be

represented as a tip on the phylogenetic tree. Some species were

related to more than one individual effect size, resulting in

polytomies in the phylogenetic tree. Branch lengths at these

polytomies were set to a length of 0.0001 (number of substitu-

tions per site), and we tested that the results were robust to

changes of this length from 0.0001 to 0.000001.

We weighted the data using the inverse of the within-effect

size variance plus the estimate of the between-effect size vari-

ance (Borenstein et al., 2009). The analyses were performed in R

(R Core Team, 2013), using the libraries ape (Paradis et al.,

2004) and nlme (Pinheiro et al., 2013; Appendices S3 & S4).

As predictors, we used six categorical variables and the phy-

logeny of the non-native species. Three variables were species

descriptors: the non-native plant life-form (i.e. tree, shrub, per-

ennial forb, annual forb, perennial grass and annual grass),

clonality or vegetative reproduction (yes or no) and ability to fix

N (yes or no). We chose these three plant traits because they are

among those that have received most attention in plant inva-

sions (Pyšek & Richardson, 2007). The three other variables

were related to the type of the invaded ecosystem (i.e. forest,

shrubland, grassland, oldfield, ruderal, desert, riparian, coastal,

wetland), biogeographic region (i.e. temperate, mediterranean,

tropical, subtropical, arid and semi-arid) and insularity (i.e.

whether the study was conducted on an island or not).

The effect sizes for the different levels of the categorical vari-

ables were computed as the maximum likelihood estimators of

the phylogenetic regression. Their 95% confidence intervals

were computed as ±1.96 times the standard errors of the

maximum likelihood estimations. The difference between two

levels, e.g. the difference between clonal and non-clonal plants,

was computed with the library multcomp in R (Hothorn et al.,

2008), using the result of the phylogenetic regression. The analy-

sis was undertaken separately for the impacts on plant and on

animal richness. For the impact on plants, we started the analysis

with the model including all categorical variables. Then we

selected the significant predictors, based on the Akaike informa-

tion criterion (AIC), and finally we tested for potential interac-

tions between them. For the impact on animals, due to the small

number of data points, we used a forward-stepwise variable

selection procedure based on the AIC. The AIC was computed

from the maximum likelihood estimate and the number of fitted

parameters by its usual formula AIC = [–2 × log(maximum like-

lihood)] + (2 × number of parameters). The AIC is given in the

standard output of the phylogenetic regression. A difference in

AIC of more than 2 from the null model is considered as a strong

indication that the variable is important, while a difference of

less than 2 is usually considered as non-significant. The rationale

behind this choice is the following: when comparing nested

models based on a log-likelihood ratio test, the more complex

model should have an AIC that is at least smaller than the AIC of

the null model minus 2, so that the test is significant at a level of

0.05 (Burnham & Anderson, 2002).

RESULTS

General patterns

Among the 96 plant species included in the analysis, the most

represented were Acacia spp. and Carpobrotus spp. with 14 and

10 cases of recorded impacts, respectively. N-fixing species

accounted for 12.6%, and species with clonal growth or vegeta-

tive reproduction 63.1% of the total number of species, respec-

tively. The biogeographic distribution of the studies was uneven,

with the majority conducted in either temperate (40.6%) or

mediterranean (35.2%) regions. Twenty per cent of studies were

conducted on islands. There were 177 and 39 cases relating to

the impact on native plant and animal species richness, respec-

tively. Most studies on impacts on animal species richness refer

to impacts on invertebrates (81.6%), mainly arthropods.

Non-native plants significantly decreased resident plant and

animal species richness in 78.3 and 78% of the studies, respec-

tively. On average, non-native plants decreased species richness

of resident plants by 20.5% and that of resident animals by

26.4%. There was no significant difference between the magni-

tude of impacts on plant and animal richness (t-test, t = 0.953,

P-value = 0.344).

Impact on plant species richness of
invaded communities

Clonal growth/vegetative reproduction and N-fixing ability had

a significant effect on the magnitude of the impact on plant

species richness of the resident community, but there were no

significant differences among life-forms, ecosystem types, bio-

geographic regions or insularity (Table 1). Grafen’s = 0.517

indicated that there was a correlation structure induced by

shared evolutionary history (i.e. a phylogenetic signal) in the

impact of non-native plants on species richness of resident

plants. The best predictor of the magnitude of impact was

N-fixing ability, followed by phylogeny and clonal growth.

Impacts of non-native plants on biodiversity
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The effect of clonal growth was tested for all life-forms except

vines. Clonal invaders decreased resident plant richness more

than non-clonal invaders (Fig. 1). The effect of N-fixation could

only be tested for trees, perennial forbs and shrubs. For each of

these life-forms, non-N-fixing species decreased plant species

richness while N-fixing species did not have a significant effect

(Fig. 2).

Impact on animal species richness of
invaded communities

Only the phylogenetic position of invading plants (Grafen’s

= 0.205) and insularity influenced the effect size of impact on

animal richness in invaded communities (Table 1). These two

significant predictors were of about the same relative impor-

tance. On average, the decrease in animal richness in invaded

communities was stronger on islands than mainlands.

DISCUSSION

Overall, non-native plants decrease plant and animal species

richness in the invaded community to the same extent. Some

studies reported impacts on both resident plant and animal

species richness. There were cases reporting reductions in ver-

tebrate species richness due to habitat alteration or changes in

feeding resources caused by non-native plants. For example,

invasion of European meadows by goldenrods, Solidago spp.,

reduces bird species richness as a result of there being fewer

native plant and insect species and thus fewer food resources for

birds (Skórka et al., 2010). Similarly, in south-eastern Australia,

riparian areas invaded by willows, Salix rubens, host fewer bird

species because a reduction in native shrub and tree cover leads

to fewer arthropods upon which to forage (Holland-Clift et al.,

2011). These examples show that in terrestrial ecosystems, plant

invasions can inflict cascading effects across trophic levels.

Clonality and N-fixation are traits that influence the magni-

tude of the impact on plant species richness but not so for

animals. Identifying which shared life-history traits determine

the magnitude of impact remains a challenge. A previous global

analysis found that the probability of a significant decrease in

resident species richness increased if the non-native species was

an annual grass (Pyšek et al., 2012). In contrast, in our analysis

we did not find an influence of life-form. We found that factors

determining the likelihood of detecting an impact, as measured

in Pyšek et al. (2012), might not be the same as those driving

how large this impact might be (i.e. the magnitude of the

impact). On average, non-native N-fixers did not reduce plant

richness while non-N-fixing invaders did. Since the seminal

studies on the impacts of the introduced tree Morella faya in

Hawai’i (Vitousek & Walker, 1989), major emphasis has been

placed on assessing the influence of N-fixing species on nutrient

cycling. In general, N-fixing plants accelerate soil N fluxes and

increase N pools (Liao et al., 2008). However, N-fixing species

do not always decrease plant richness (e.g. Valtonen et al., 2006;

Giantomasi et al., 2008), possibly because in communities

invaded by N-fixing species there is less competition for N than

in N-poor soils. The effect of N-fixing on the recipient commu-

nity might be more related to the similarity in N use between the

non-native and native species (Chapin et al., 1996; Castro-Díez

et al., 2014) than to the capacity of a non-native species to fix N.

The phylogenetic signal on the magnitude of non-native plant

impacts indicates that differences in impact between two par-

ticular non-native plant species depend, in part, on their evolu-

tionary relatedness (see Yessoufou et al., 2014, for non-native

mammals). Because phylogenetic relatedness can be considered

as a surrogate of phenotypic, or even ecological, similarity

(Losos, 2008), the phylogenetic signal suggests that a suite of

plant traits that are shared by closely related species partly deter-

mines the magnitude of the impact inflicted by plant species.

Therefore, besides life-form, other functional traits might

provide great insight in future analyses of invasion impacts

(Díaz & Cabido, 1997) because there is a link between

phylogenetic relatedness, functional diversity of traits and eco-

system functioning (Cadotte et al., 2009).

While the importance of phylogenetic relatedness has been

considered in predicting differences among non-native species

at all steps of the invasion process (Procheş et al., 2008), includ-

ing establishment (Cassey et al., 2004; Dawson et al., 2009),

naturalization (Diez et al., 2009) and invasion success (Strauss

et al., 2006; Lososová et al., 2008; Yessoufou et al., 2014), its

effect on ecological impacts on recipient communities has rarely

been considered (but see Castro-Díez et al., 2014). To provide a

general understanding of the importance of phylogenetic posi-

tion for the impacts of non-native species, a greater focus should

be placed on the phylogenetic similarity between the non-native

and the resident species in the recipient community (Gerhold

et al., 2011).

The type of invaded ecosystem and region were not of great

significance in determining the net magnitude of impacts,

except for a stronger decrease in animal species richness on

islands compared with mainland regions. Our results suggest

Table 1 Relative importance of the variables and the phylogeny
in explaining the size of the impact of non-native plant species on
plant and animal richness. We present the differences in the
Akaike information criterion (AIC) between the full model and
the model without the variable of interest. A difference in AIC of
more than 2 is considered as a strong indication that the variable
is important and can be considered to be significant, while a
difference less than 2 is usually considered as non-significant
(n.s.).

Predictor

Plant

richness

Animal

richness

Clonal growth 10.89 n.s.

Life-form n.s. n.s.

N-fixing 172.57 n.s.

Phylogeny 24.66 2.53

Ecosystem type n.s. n.s.

Biogeographic region n.s. n.s

Insularity n.s. 4.99
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that any ecosystem type in any region could be vulnerable to the

impact of non-native plants. This explains why impacts of non-

native plants are often similar within and outside protected areas

(Hulme et al., 2013b).

Compared with mainland regions, islands are poor and dis-

harmonious in species, and host numerous endemics

(Whittaker, 1998); species have low vagility and form few and

small populations which are more susceptible to the effects of

non-native species (Berglund et al., 2009). The lack of difference

in the magnitude of impact of non-native plants on plant

species richness between mainland and islands is surprising

given that it is widely accepted that islands are highly susceptible

to invasions (D’Antonio & Dudley, 1995; Berglund et al., 2009;

Pyšek et al., 2012). The ecological impacts of plant invasions on

island biodiversity might be more closely associated with

changes in species composition (e.g. endemic species being

replaced by non-native species) than with the number of

species. Further work comparing paired island and mainland

ecosystems is needed to assess the relationships between the

susceptibility to invasion and subsequent impact.

In sum, our quantitative review shows that the magnitude of

the impact of plant invaders on plant richness is dependent on

plant traits regardless of ecosystem type. In contrast, the impact

on animal richness, mainly arthropods, is generally stronger on

islands but independent of the particular plant traits examined

in this study. The phylogenetic signal identified here pinpoints

that closely related non-native species exert similar impacts on

native communities. Therefore, our results support the need to

Figure 1 Effect size (± 1.96 SE) of the
impact of non-native plant species on
plant richness as a function of the
life-form of the non-native species and
clonality/vegetative reproduction. Effect
size is computed as the log-ratio of the
number of species in the invaded plot over
the control plot. An effect size is
significantly different from zero when its
95% confidence interval does not bracket
zero. A negative effect size indicates a
decrease in plant species richness. Sample
sizes for non-clonal and clonal species are
indicated in parentheses, respectively.

Figure 2 Effect size (± 1.96 SE) of the
impact of non-native plant species on plant
richness as a function of the non-native
species life-form and N-fixing ability. Effect
size is computed as the log-ratio of the
number of species in the invaded plot over
the control plot. An effect size is
significantly different from zero when its
95% confidence interval does not bracket
zero. A negative effect size indicates a
decrease in plant species richness. Sample
sizes for N-fixing and non N-fixing species
are indicated in parentheses, respectively.
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include in risk assessments the phylogenetic similarity of non-

native plants to known invaders to identify non-native species of

potentially high impact (Pheloung et al., 1999; Diez et al., 2012;

Hulme, 2012; Yessoufou et al., 2014).
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