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INTRODUCTION: Several major develop-

ments in theoretical ecology have relied 

on either dynamical stability or numeri-

cal simulations, but oftentimes, they have 

found contradictory results. This is partly a 

result of not rigorously checking either the 

assumption that a steady state is feasible—

meaning, all species have constant and 

positive abundances—or the dependence 

of results to model parameterization. 

Here, we extend the concept of structural 

stability to community ecology in order to 

account for these two problems. Specifi-

cally, we studied the set of conditions lead-

ing to the stable coexistence of all species 

within a community. This shifts the ques-

tion from asking whether we can find a 

feasible equilibrium point for a fixed set 

of parameter values, to asking how large 

is the range of parameter values that are 

compatible with the stable coexistence of 

all species.

RATIONALE: We begin by disentangling 

the conditions of global stability from the 

conditions of feasibility of a steady state in 

ecological systems. To quantify the domain 

of stable coexistence, 

we first find its center 

(the structural vec-

tor of intrinsic growth 

rates). Next, we deter-

mine the boundaries 

of such a domain by 

quantifying the amount of variation from 

the structural vector tolerated before one 

species goes extinct. Through this two-step 

approach, we disentangle the effects of the 

size of the feasibility domain from how 

close a solution is to its boundary, which 

is at the heart of previous contradictory 

results. We illustrate our method by explor-

ing how the observed architecture of mutu-

alistic networks between plants and their 

pollinators or seed dispersers affects their 

domain of stable coexistence.

RESULTS: First, we determined the net-

work architecture that maximizes the 

structural stability of mutualistic systems. 

This corresponds to networks with a maxi-

mal level of nestedness, a small trade-off 

between the number and intensity of inter-

actions a species has, and a high level of 

mutualistic strength within the constraints 

of global stability. Second, we found that 

the large majority of observed mutual-

istic networks are close to this optimum 

network architecture, maximizing the 

range of parameters that are compatible 

with species coexistence.

CONCLUSION: Structural stability has 

played a major role in several fields such 

as evolutionary developmental biology, in 

which it has brought the view that some 

morphological structures are more com-

mon than others because they are compat-

ible with a wider range of developmental 

conditions. In community ecology, structural 

stability is the sort of framework needed to 

study the consequences of global environ-

mental change—by definition, large and di-

rectional—on species coexistence. Structural 

stability will serve to assess both the range of 

variability a given community can withstand 

and why some community patterns are more 

widespread than others. ■ 
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ON OUR WEBSITE

The architecture of plant-animal mutualistic networks modulates the range of condi-

tions leading to the stable coexistence of all species. The area of the dif erent domains 

represents the structural stability of a model of mutualistic communities with a given network 

architecture. The nested networks observed in nature—illustrated here by the network at the 

bottom—lead to a maxi mum structural stability. 
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On the structural stability of
mutualistic systems
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In theoretical ecology, traditional studies based on dynamical stability and numerical
simulations have not found a unified answer to the effect of network architecture on
community persistence. Here, we introduce a mathematical framework based on the
concept of structural stability to explain such a disparity of results. We investigated the
range of conditions necessary for the stable coexistence of all species in mutualistic
systems. We show that the apparently contradictory conclusions reached by previous
studies arise as a consequence of overseeing either the necessary conditions for
persistence or its dependence on model parameterization.We show that observed network
architectures maximize the range of conditions for species coexistence. We discuss the
applicability of structural stability to study other types of interspecific interactions.

A
prevailing question in ecology [particularly
since May’s seminal work in the early 1970s
(1)] is whether, given an observed number
of species and their interactions, there are
ways to organize those interactions that

lead to more persistent communities. Conven-
tionally, studies addressing this question have
either looked into local stability or used numer-
ical simulations (2–4). However, these studies
have not yet found a unified answer (1, 5–12).
Therefore, the current challenge is to develop a
general framework in order to provide a uni-
fied assessment of the implications of the archi-
tectural patterns of the networks we observe in
nature.

Main approaches in theoretical ecology

Dynamical stability and feasibility

Studies based on the mathematical notions of
local stability, D-stability, and global stability
have advanced our knowledge on what makes
ecological communities stable. In particular, these
studies explore how interaction strengths need
to be distributed across species so that an as-
sumed feasible equilibrium point can be stable
(1–4, 13–17). By definition, a feasible equilibrium
point is that in which all species have a constant
positive abundance across time. A negative abun-
dance makes no sense biologically, and an abun-
dance of zero would correspond to an extinct
species.
The dynamical stability of a feasible equilib-

rium point corresponds to the conditions under
which the system returns to the equilibriumpoint

after a perturbation in species abundance. Local
stability, for instance, looks at whether a system
will return to an assumed feasible equilibrium
after an infinitesimally small perturbation (1–3, 13).
D-stability, in turn, looks at the local stability of
any potential feasible equilibrium that the system
may have (15–17). More generally, global stability
looks at the stability of any potential feasible
equilibrium point after a perturbation of any
given amplitude (14–17). A technical definition of
these different types of dynamical stability and
their relationship is provided in (18).
In most of these stability studies, however, a

feasible equilibrium point is always assumed
without rigorously studying the set of conditions
allowing its existence (5, 14, 15, 19). Yet in any
given system, we can find examples in which we
satisfy only one, both, or none of the feasibility
and stability conditions (3, 16, 17, 19). This means
that without a proper consideration of the fea-
sibility conditions, any conclusion for studying
the stable coexistence of species is based on a
system that may or may not exist (3, 5, 19).
To illustrate this point, consider the following

textbook example of a two-species competition
system

dN1

dt
¼ N1ða1 − b11N1 − b12N2Þ

dN2

dt
¼ N2ða2 − b21N1 − b22N2Þ

8><>: ð1Þ

where N1 and N2 are the abundances of species
1 and 2; b11 and b22 are their intraspecific com-
petition strengths; b12 and b21 are their inter-
specific competition strengths; and a1 and a2 are
their intrinsic growth rates. An equilibrium point
of the system is a pair of abundancesN*

1 and N*
2

that makes the right side of the ordinary differ-
ential equation system equal to zero.
Although the only condition necessary to guar-

antee the global stability of any feasible equilib-
rium point in this system is that the interspecific

competition strengths are lower than the in-
traspecific ones (b12b21 < b11b22), the feasibility

conditions are given byN*
1 ¼ b22a1 − b12a2

b11b22 − b12b21
> 0 and

N*
2 ¼ b11a2 − b21a1

b11b22 − b12b21
> 0 (3, 4, 19). This implies that

if we set, for example, b11 = b22 = 1, b12 = b21 = 0.5,
a1 = 1 , and a2 = 2, we fulfill the stability condition
but not the feasibility condition, whereas if we set
b11 = b22 = 0.5, b12 = b21 = 1, and a1 = a2 = 1, we can
satisfy the feasibility condition but not the sta-
bility one. To have a stable and feasible equi-
librium point, we need to set, for instance, b11 =
b22 = 1, b12 = b21 = 0.5, and a1 = a2 = 1 (a graphical
illustration is provided in Fig. 1).
The example above confirms the importance

of verifying both the stability and the feasibility
conditions of the equilibrium point when analyz-
ing the stable coexistence of species (3–5, 19). Of
course, we can always fine-tune the parameter
values of intrinsic growth rates so that the sys-
tem is feasible (16, 17). This strategy, for example,
has been used when studying the success prob-
ability of an invasive species (20). However, when
fixing the parameter values of intrinsic growth
rates, we are not anymore studying the overall
effect of interspecific interactions on the stable
coexistence of species. Rather, we are answering
the question of how interspecific interactions in-
crease the persistence of species for a given param-
eterization of intrinsic growth rates. As we will
show below, this is also the core of the problem in
studies that are based on arbitrary numerical
simulations.

Numerical simulations

Numerical simulations have provided an alter-
native and useful tool with which to explore spe-
cies coexistence in large ecological systems in
which analytical solutions are precluded (3). With
this approach, one has as a prerequisite to param-
eterize the dynamical model, or a least to have a
good estimate of the statistical distribution from
which these parameters should be sampled. How-
ever, if one chooses an arbitrary parameterization
without an empirical justification, any study
has a high chance of being inconclusive for real
ecosystems because species persistence is strongly
dependent on the chosen parameterization.
To illustrate this point, we simulated the dy-

namics of an ecological model (6) with three
different parameterizations of intrinsic growth
rates (21). Additionally, these simulations were
performed over an observedmutualistic network
of interactions between flowering plants and their
pollinators located in Hickling Norfolk, UK (ta-
ble S1), a randomized version of this observed
network, and the observed network without mu-
tualistic interactions (we assume that there is only
competition among plants and among animals).
As shown in Fig. 2, it is possible to find a set of
intrinsic growth rates so that any network that
we analyze is completely persistent and, at the
same time, the alternative networks are less
persistent.
This observation has two important implica-

tions. First, this means that by using different
parameterizations for the same dynamicalmodel
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and network of interactions, one can observe from
all to a few of the species surviving. Second, this
means that each network has a limited range of
parameter values under which all species coexist.
Thus, by studying a specific parameterization, for
instance, one could wrongly conclude that a ran-
dom network has a greater effect on community
persistence than that of an observed network, or
vice versa (10–12). This sensitivity to parameter
values clearly illustrates that the conclusions
that arise from studies that use arbitrary values
in intrinsic growth rates are not about the ef-
fects of network architecture on species coex-
istence, but about which network architecture
maximizes species persistence for that specific
parameterization.
Traditional studies focusing on either local

stability or numerical simulations can lead to
apparently contradictory results. Therefore, we
need a different conceptual framework to unify
results and seek for appropriate generalizations.

Structural stability

Structural stability has been a general mathema-
tical approach with which to study the behavior
of dynamical systems. A system is considered to
be structurally stable if any smooth change in the
model itself or in the value of its parameters does
not change its dynamical behavior (such as the
existence of equilibrium points, limit cycles, or
deterministic chaos) (22–25). In the context of
ecology, an interesting behavior is the stable
coexistence of species—the existence of an equi-
librium point that is feasible and dynamically
stable. For instance, in our previous two-species
competition system there is a restricted area in
the parameter space of intrinsic growth rates
that leads to a globally stable and feasible solu-
tion as long as r < 1 (Fig. 3, white area). The
higher the competition strength r, the larger the
size of this restricted area (Fig. 3) (19, 26). There-
fore, a relevant question here is not only whether
or not the system is structurally stable, but how
large is the domain in the parameter space lead-
ing to the stable coexistence of species.
To address the above question, we recast the

mathematical definition of structural stability to
that in which a system is more structurally sta-
ble, the greater the area of parameter values
leading to both a dynamically stable and feasible
equilibrium (27–29). This means that a highly
structurally stable ecological system is more like-
ly to be stable and feasible by handling a wider
range of conditions before the first species be-
comes extinct. Previous studies have used this
approach in low-dimensional ecological systems
(3, 19). Yet because of its complexity, almost no
study has fully developed this rigorous analysis
for a systemwith an arbitrary number of species.
An exception has been the use of structural sta-
bility to calculate an upper bound to the number
of species that can coexist in a given community
(6, 30).
Here, we introduce this extended concept of

structural stability into community ecology in
order to study the extent to which network
architecture—strength and organization of inter-

specific interactions—modulates the range of con-
ditions compatible with the stable coexistence
of species. As an empirical application of our
framework, we studied the structural stability
of mutualistic systems and applied it on a data
set of 23 quantitative mutualistic networks
(table S1). We surmise that observed network
architectures increase the structural stability
and in turn the likelihood of species coex-
istence as a function of the possible set of con-
ditions in an ecological system. We discuss the
applicability of our framework to other types of
interspecific interactions in complex ecological
systems.

Structural stability of mutualistic systems

Mutualistic networks are formed by themutually
beneficial interactions between flowering plants

and their pollinators or seed dispersers (31).
These mutualistic networks have been shown to
share a nested architectural pattern (32). This
nested architecturemeans that typically, themu-
tualistic interactions of specialist species are pro-
per subsets of the interactions of more generalist
species (32). Although it has been repeatedly
shown that this nested architecture may arise
from a combination of life history and comple-
mentarity constraints among species (32–35), the
effect of this nested architecture on community
persistence continues to be a matter of strong
debate. On the one hand, it has been shown that
a nested architecture can facilitate the mainte-
nance of species coexistence (6), exhibit a flexible
response to environmental disturbances (7, 8, 36),
andmaximize total abundance (12). On the other
hand, it has also been suggested that this nested
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Fig. 1. Stability and feasibility of a two-species competition system. For the same parameters of
competition strength (which grant the global stability of any feasible equilibrium), (A to C) represent the
two isoclines of the system.Their intersection gives the equilibrium point of the system (3, 19). Scenario
(A) leads to a feasible equilibrium (both species have positive abundances at equilibrium), whereas
in scenarios (B) and (C), the equilibrium is not feasible (one species has a negative abundance at
equilibrium). (D) represents the area of feasibility in the parameter space of intrinsic growth rates, under
the condition of global stability. This means that when the intrinsic growth rates of species are chosen
within the white area, the equilibrium point is globally stable and feasible. In contrast, when the intrinsic
growth rates of species are chosen within the green area, the equilibrium point is not feasible. Points “A,”
“B,” and “C” indicate the parameter values corresponding to (A) to (C), respectively.
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architecture canminimize local stability (9), have
a negative effect on community persistence (10),
and have a low resilience to perturbations (12).
Not surprisingly, the majority of these studies
have been based on either local stability or nu-
merical simulations with arbitrary parameter-
izations [but, see (6)].

Model of mutualism

To study the structural stability and explain the
apparently contradictory results found in studies

ofmutualistic networks, we first need to introduce
an appropriate model describing the dynamics
between and within plants and animals. We use
the same set of differential equations as in (6).
We chose these dynamics because they are sim-
ple enough to provide analytical insights and yet
complex enough to incorporate key elements—
such as saturating, functional responses (37, 38)
and interspecific competitionwithin a guild (6)—
recently adduced as necessary ingredients for a
reasonable theoretical exploration of mutualistic

interactions. Specifically, the dynamical model
has the following form

dPi

dt
¼ Pi aðPÞi − ∑ jb

ðPÞ
ij Pj þ

∑ jg
ðPÞ
ij Aj

1þ h∑ jg
ðPÞ
ij Aj

 !
dAi

dt
¼ Ai aðAÞi − ∑ jb

ðAÞ
ij Aj þ

∑ jg
ðAÞ
ij Pj

1þ h∑ jg
ðAÞ
ij Pj

 !
8>>>>><>>>>>:

ð2Þ

where the variables Pi and Ai denote the abun-
dance of plant and animal species i, respectively.
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Fig. 2. Numerical analysis of species persistence as a function of model
parameterization. This figure shows the simulated dynamics of species
abundance and the fraction of surviving species (positive abundance at the
end of the simulation) using the mutualistic model of (6). Simulations are
performed by using an empirical network located in Hickling, Norfolk, UK
(table S1), a randomized version of this network using the probabilistic model

of (32), and the network without mutualism (only competition). Each row
corresponds to a different set of growth rate values. It is always possible to
choose the intrinsic growth rates so that all species are persistent in each of
the three scenarios, and at the same time, the community persistence
defined as the fraction of surviving species is lower in the alternative
scenarios.
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The parameters of this mutualistic system cor-
respond to the values describing intrinsic growth
rates (ai), intra-guild competition (bij), the bene-
fit received via mutualistic interactions (gij), and
the saturating constant of the beneficial effect of
mutualism (h), commonly known as the hand-
ling time. Because our main focus is on mutual-
istic interactions, we keep as simple as possible
the competitive interactions for the sake of ana-
lytical tractability. In the absence of empirical
information about interspecific competition,
we use a mean field approximation for the
competition parameters (6), where we set
bðPÞii ¼ bðAÞii ¼ 1 and bðPÞij ¼ bðAÞij ¼ r < 1 (i ≠ j).
Following (39), the mutualistic benefit can be

further disentangled by gij ¼ ðg0yijÞ=ðkdi Þ, where
yij = 1 if species i and j interact and zero other-
wise, ki is the number of interactions of species
i, g0 represents the level of mutualistic strength,
and d corresponds to the mutualistic trade-off.
The mutualistic strength is the per capita effect
of a certain species on the per capita growth rate
of their mutualistic partners. The mutualistic
trade-off modulates the extent to which a species
that interactswith fewother species does it strongly,
whereas a species that interacts with many part-
ners does it weakly. This trade-off has been jus-
tified on empirical grounds (40, 41). The degree
to which interspecific interactions yij are orga-
nized into a nested way can be quantified by the
value of nestedness N introduced in (42).
We are interested in quantifying the extent to

which network architecture (the combination of
mutualistic strength, mutualistic trade-off, and
nestedness)modulates the set of conditions com-
patible with the stable coexistence of all species—
the structural stability. In the next sections, we
explain how this problem can be split into two
parts. First, we explain how the stability condi-
tions can be disentangled from the feasibility
conditions as it has already been shown for the
two-species competition system. Specifically, we
show that below a critical level of mutualistic
strength (g0 < gr0), any feasible equilibrium point
is granted to be globally stable. Second, we ex-
plain how network architecture modulates the
domain in the parameter space of intrinsic growth
rates, leading to a feasible equilibrium under the
constraints of being globally stable (given by the
level of mutualistic strength).

Stability condition

We investigated the conditions in our dynamical sys-
tem that any feasible equilibrium point needs to sat-
isfy to be globally stable. To derive these conditions,
we started by studying the linear Lotka-Volterra ap-
proximation (h = 0) of the dynamical model (Eq. 2).
In this linear approximation, the model reads"
dP

dt
dA
dt

#
¼ diag

P
A

� �� �

�

 
aðPÞ

aðAÞ

� �
− bðPÞ −gðPÞ

−gðAÞ bðAÞ

� �
︸:¼B

P
A

� �!
ð3Þ

where the matrix B is a two-by-two block matrix
embedding all the interaction strengths.
Conveniently, the global stability of a feasible

equilibrium point in this linear Lotka-Volterra
model has already been studied (14–17, 43). Par-
ticularly relevant to this work is that an inter-
action matrix that is Lyapunov–diagonally stable
grants the global stability of any potential fea-
sible equilibrium (14–18).
Although it ismathematically difficult to verify

the condition for Lyapunov diagonal stability, it
is known that for some classes of matrices,
Lyapunov stability and Lyapunov diagonal sta-
bility are equivalent conditions (44). Symmetric
matrices and Z-matrices (matrices whose off-
diagonal elements are nonpositive) belong to
those classes of equivalent matrices. Our interac-
tion strength matrix B is either symmetric when
the mutualistic trade-off is zero (d = 0) or is a
Z-matrix when the interspecific competition
is zero (r = 0). This means that as long as the
real parts of all eigenvalues of B are positive
(18), any feasible equilibrium point is globally
stable. For instance, in the case of r < 1 and g0 =

0, the interaction matrix B is symmetric and
Lyapunov–diagonally stable because its eigen-
values are 1 – r, (SA – 1)r + 1, and (SP – 1)r + 1.
For r > 0 and d > 0, there are no analytical

results yet demonstrating that Lyapunov diago-
nal stability is equivalent to Lyapunov stability.
However, after intensive numerical simulations
we conjecture that the twomain consequences of
Lyapunov diagonal stability hold (45). Specifi-
cally, we state the following conjectures: Conjec-
ture 1: If B is Lyapunov-stable, then B isD-stable.
Conjecture 2: If B is Lyapunov-stable, then any
feasible equilibrium is globally stable.
We found that for any givenmutualistic trade-

off and interspecific competition, the higher the
level ofmutualistic strength, the smaller themax-
imum real part of the eigenvalues of B (45). This
means that there is a critical value of mutualistic
strength (g0

r) so that above this level, thematrix B
is not any more Lyapunov-stable. To compute gr0,
we need only to find the critical value of g0 at
which the real part of one of the eigenvalues of
the interaction-strength matrix reaches zero (45).
This implies that at least below this critical value

1253497-4 25 JULY 2014 • VOL 345 ISSUE 6195 sciencemag.org SCIENCE

Fig. 3. Structural stability in a two-species competition system.The figure shows how the range of
intrinsic growth rates leading to the stable coexistence of the two species (white region) changes as a
function of the competition strength. (A to D) Decreasing interspecific competition increases the area of
feasibility, and in turn, the structural stability of the system. Here, b11 = b22 = 1, and b12 = b21 = r. Our goal is
extending this analysis to realistic networks of species interactions.
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g0 < g0
r, any feasible equilibrium is granted to be

locally and globally stable according to conjec-
tures 1 and 2, respectively. We can also grant the
global stability of matrix B by the condition of
being positive definite, which is even stronger
than Lyapunov diagonal stability (14). However,
this condition imposes stronger constraints on
the critical value ofmutualistic strength than does
Lyapunov stability (39).
Last, we studied the stability conditions for the

nonlinear Lotka-Volterra system (Eq. 2). Although
the theory has been developed for the linear
Lotka-Volterra system, it can be extended to the
nonlinear dynamical system. To grant the stabil-
ity of any feasible equilibrium (Pi > 0 and Ai > 0
for all i) in the nonlinear system, we need to
show that the above stability conditions hold on
the following two-by-two block matrix (14, 43)

Bnl : ¼
bðPÞij −

gðPÞij

1þ h∑kg
ðPÞ
ik Ak

−
gðAÞij

1þ h∑kg
ðAÞ
ik Pk

bðAÞij

266664
377775
ð4Þ

Bnl differs from B only in the off-diagonal block
with a decreased mutualistic strength. This im-
plies that the critical value of mutualistic strength
for the nonlinear Lotka-Volterra system is larger
than or equal to the critical value for the linear
system (45). Therefore, the critical value g0

r derived
from the linear Lotka-Volterra system (from the
matrix B) is already a sufficient condition to grant
the global stability of any feasible equilibrium in
the nonlinear case. However, this does not imply
that above this critical value of mutualistic

strength, a feasible equilibrium is unstable. In
fact, when the mutualistic-interaction terms are
saturated (h > 0), it is possible to have feasible
and locally stable equilibria for any level of mu-
tualistic strength (39, 45).

Feasibility condition

We highlight that for any interaction strength
matrix B, whether it is stable or not, it is always
possible to find a set of intrinsic growth rates
so that the system is feasible (Fig. 2). To find
this set of values, we need only to choose a
feasible equilibrium point so that the abun-
dance of all species is greater than zero (A*i > 0
and P*j > 0) and find the vector of intrinsic
growth rates so that the right side of Eq. 2 is

equal to zero: aðPÞi ¼ ∑ jb
ðPÞ
ij P*j −

∑ jg
ðPÞ
ij A*j

1 þ h∑ jg
ðPÞ
ij A*j

and aðAÞi ¼ ∑ jb
ðAÞ
ij A*j −

∑ jg
ðAÞ
ij P*j

1 þ h∑ jg
ðAÞ
ij P*j

. This recon-

firms that the stability and feasibility conditions
are different and that they need to be rigorously
verified when studying the stable coexistence of
species (3, 16, 17, 19). This also highlights that the
relevant question is not whether we can find a
feasible equilibrium point, but how large is the
domain of intrinsic growth rates leading to a
feasible and stable equilibrium point. We call
this domain the feasibility domain.
Because the parameter space of intrinsic growth

rates is substantially large (RS, where S is the
total number of species), an exhaustive numeri-
cal search of the feasibility domain is impossible.
However, we can analytically estimate the center
of this domain with what we call the structural
vector of intrinsic growth rates. For example, in

the two-species competition system of Fig. 4A
the structural vector is the vector (in red), which
is in the center of the domain leading to fea-
sibility of the equilibrium point (white region).
Any vector of intrinsic growth rates collinear to
the structural vector guarantees the feasibility of
the equilibrium point—that is, guarantees spe-
cies coexistence. Because the structural vector is
the center of the feasibility domain, then it is also
the vector that can tolerate the strongest devia-
tion before leaving the feasibility domain—that
is, before having at least one species going extinct.
In mutualistic systems, we need to find one

structural vector for animals and another for plants.
These structural vectors are the set of intrinsic
growth rates that allow the strongest perturba-
tions before leaving the feasibility domain. To
find these structural vectors, we had to transform
the interaction-strength matrix B to an effective
competition framework (45). This results in an
effective competitionmatrix for plants and a dif-
ferent one for animals (6), in which thesematrices
represent respectively the apparent competition
amongplants and among animals, once taking into
account the indirect effect via theirmutualistic part-
ners. With a nonzero mutualistic trade-off (d > 0),
the effective competition matrices are nonsymmet-
ric, and in order to find the structural vectors, we
have to use the singular decomposition approach—
a generalization of the eigenvalue decomposition.
This results in a left and a right structural vector
for plants and for animals in the effective compe-
tition framework. Last, we need tomove back from
the effective competition framework in order to
obtain a left and right vector for plants (aðPÞL and
aðPÞR ) and animals (aðAÞL and aðAÞR ) in the observed
mutualistic framework. The full derivation is
provided in the supplementary materials (45).
Once we locate the center of the feasibility

domain with the structural vectors, we can ap-
proximate the boundaries of this domain by
quantifying the amount of variation from the
structural vectors allowed by the system before
having any of the species going extinct—that is,
before losing the feasibility of the system. To
quantify this amount, we introduced propor-
tional random perturbations to the structural
vectors, numerically generated the new equilib-
rium points (21), and measured the angle or the
deviation between the structural vectors and the
perturbed vectors (a graphical example is provided
in Fig. 4A). The deviation from the structural vec-
tors is quantified, for the plants, by hP (a

(P)) = [1 −
cos(y(P)L)cos(y

(P)
R)]/[cos(y

(P)
L)cos(y

(P)
R)], where y

(P)
L and

y(P)R are, respectively, the angles between a(P)

and a(P)L and between a(P) and a(P)R. The pa-
rameter a(P) is any perturbed vector of intrinsic
growth rates of plants. The deviation from the
structural vector of animals is computed similarly.
As shown in Fig. 4B, the greater the deviation

of the perturbed intrinsic growth rates from the
structural vectors, the lower is the fraction of
surviving species. This confirms that there is a
restricted domain of intrinsic growth rates cen-
tered on the structural vectors compatible with
the stable coexistence of species. The greater the
tolerated deviation from the structural vectors
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Fig. 4. Deviation from the structural vector and community persistence. (A) The structural vector
of intrinsic growth rates (in red) for the two-species competition system of Fig. 1. The structural vector is
the vector in the center of the domain leading to the feasibility of the equilibrium point (white region) and
thus can tolerate the largest deviation before any of the species go extinct. The deviation between the
structural vector and any other vector (blue) is quantified by the angle between them. (B) The effect of
the deviation from the structural vector on intrinsic growth rates on community persistence defined as
the fraction of model-generated surviving species. The example corresponds to an observed network
located in North Carolina, USA (table S1), with a mutualistic trade-off d = 0.5 and a maximum level of
mutualistic strength g0 = 0.2402. Blue symbols represent the community persistence, and the surface
represents the fit of a logistic regression (R2 = 0.88).
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within which all species coexist, the greater the
feasibility domain, and in turn the greater the
structural stability of the system.

Network architecture and
structural stability

To investigate the extent to which network
architecture modulates the structural stability of
mutualistic systems, we explored the combina-
tion of alternative network architectures (combi-
nations of nestedness, mutualistic strength, and
mutualistic trade-off) and their corresponding
feasibility domains.
To explore these combinations, for each ob-

served mutualistic network (table S1) we ob-
tained 250 different model-generated nested
architectures by using an exhaustive resampling
model (46) that preserves the number of species
and the expected number of interactions (45).
Theoretically, nestedness ranges from 0 to 1 (42).
However, if one imposes architectural constraints
such as preserving the number of species and
interactions, the effective range of nestedness
that the network can exhibit may be smaller (45).
Additionally, each individual model-generated
nested architecture is combined with different
levels of mutualistic trade-off d andmutualistic
strength g0. For the mutualistic trade-off, we ex-
plored values d ∈ [0, ..., 1.5] with steps of 0.05 that
allow us to explore sublinear, linear, and super-
linear trade-offs. The case d = 0 is equivalent to
the soft mean field approximation studied in (6).
For each combination of network of interactions
and mutualistic trade-off, there is a specific crit-
ical value gr0 in the level of mutualism strength
g0 up to which any feasible equilibrium is glob-
ally stable. This critical value gr0 is dependent on
the mutualistic trade-off and nestedness. However,
the mean mutualistic strength g ¼ 〈gij〉 shows no
pattern as a function of mutualistic trade-off and
nestedness (45). Therefore, we explored values of
g0 ∈ ½0; :::; gr0� with steps of 0.05 and calculated
the new generated mean mutualistic strengths.
This produced a total of 250 × 589 different net-
work architectures (nestedness, mutualistic trade-
off, and mean mutualistic strength) for each
observed mutualistic network.
We quantified how the structural stability (fea-

sibility domain) ismodulated by these alternative
network architectures in the following way. First,
we computed the structural vectors of intrinsic
growth rates that grant the existence of a feasible
equilibrium of each alternative network archi-
tecture. Second, we introduced proportional ran-
dom perturbations to the structural vectors of
intrinsic growth rates andmeasured the angle or
deviation (h(A), h(P)) between the structural vectors
and the perturbed vectors. Third, we simulated
species abundance using the mutualistic model
of (6) and the perturbed growth rates as intrinsic
growth rate parameter values (21). These devia-
tions lead to parameter domains from all to a few
species surviving (Fig. 4).
Last, we quantified the extent to which net-

work architecture modulates structural stability
by looking at the association of community per-
sistence with network architecture parameters,

once taking into account the effect of intrinsic
growth rates. Specifically, we studied this asso-
ciation using the partial fitted values from a
binomial regression (47) of the fraction of sur-
viving species on nestedness (N), mean mutual-
istic strength (g), and mutualistic trade-off (d),
while controlling for the deviations from the struc-
tural vectors of intrinsic growth rates (h(A), h(P)).
The full description of this binomial regression and
the calculation of partial fitted values are provided
in (48). These partial fitted values are the contri-
bution of network architecture to the logit of the
probability of species persistence, and in turn,
these values are positively proportional to the size
of the feasibility domain.

Results

We analyzed each observed mutualistic network
independently because network architecture is

constrained to the properties of each mutualistic
system (11). For a given pollination system lo-
cated in the KwaZulu-Natal region of South
Africa, the extent to which its network archi-
tecturemodulates structural stability is shown in
Fig. 5. Specifically, the partial fitted values are
plotted as a function of network architecture. As
shown in Fig. 5A, not all architectural combina-
tions have the same structural stability. In par-
ticular, the architectures that maximize structural
stability (reddish/darker regions) correspond to
the following properties: (i) a maximal level of
nestedness, (ii) a small (sublinear) mutualistic
trade-off, and (iii) a high level of mutualistic
strength within the constraint of any feasible
solution being globally stable (49).
A similar pattern is present in all 23 observed

mutualistic networks (45). For instance, using
three different levels of interspecific competition
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Fig. 5. Structural stability in complexmutualistic systems. For an observedmutualistic systemwith 9
plants, 56 animals, and 103 mutualistic interactions located in the grassland asclepiads in South Africa
(table S1) (58), (A) corresponds to the effect—colored by partial fitted residuals—of the combination of
different architectural values (nestedness, mean mutualistic strength, and mutualistic trade-off) on the
domain of structural stability. The reddish/darker the color, the larger the parameter space that is
compatible with the stable coexistence of all species, and in turn the larger the domain of structural
stability. (B), (C), and (D) correspond to different slices of (A). Slice (B) corresponds to ameanmutualistic
strength of 0.21, slice (C) corresponds to the observed mutualistic trade-off, and slice (D) corresponds to
the observed nestedness. Solid lines correspond to the observed values of nestedness and mutualistic
trade-offs.
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(r = 0.2, 0.4, 0.6), we always find that structural
stability is positively associated with nestedness
andmutualistic strength (45). Similarly, structur-
al stability is always associated with the mutual-
istic trade-off by a quadratic function, leading
quite often to an optimal value for maximizing
structural stability (45). These findings reveal
that under the given characterization of inter-
specific competition, there is a general pattern of

network architecture that increases the struc-
tural stability of mutualistic systems.
Yet, one question remains to be answered: Is

the network architecture that we observe in
nature close to the maximum feasibility domain
of parameter space under which species coexist?
To answer this question, we compared the ob-
served network architecture with theoretical
predictions. To extract the observed network

architecture, we computed the observed nested-
ness from the observed binary interactionmatrices
(table S1) following (42). The observed mutual-
istic trade-off d is estimated from the observed
number of visits of pollinators or fruits con-
sumed by seed-dispersers to flowering plants
(41, 50, 51). The full details on how to compute
the observed trade-off is provided in (52). Be-
cause there is no empirical data on the relation-
ship between competition andmutualistic strength
that could allow us to extract the observed mu-
tualistic strength g0, our results on nestedness
and mutualistic trade-off are calculated across
different levels of mean mutualistic strength.
As shown in Fig. 5, B to D, the observed

network (blue solid lines) of the mutualistic sys-
tem located in the grassland asclepiads of South
Africa actually appears to have an architecture
close to the one that maximizes the feasibility
domain under which species coexist (reddish/
darker region). To formally quantify the degree
to which each observed network architecture is
maximizing the set of conditions under which
species coexist, we compared the net effect of the
observed network architecture on structural sta-
bility against the maximum possible net effect.
The maximum net effect is calculated in three
steps.
First, as outlined in the previous section, we

computed the partial fitted values of the effect
of alternative network architectures on species
persistence (48). Second, we extracted the range
of nestedness allowed by the network given the
number of species and interactions in the sys-
tem (45). Third, we computed themaximumnet
effect of network architecture on structural
stability by finding the difference between the
maximum and minimum partial fitted values
within the allowed range of nestedness and
mutualistic trade-off between d ∈ [0, ..., 1.5]. All
the observed mutualistic trade-offs have values
between d ∈ [0, ..., 1.5]. Last, the net effect of the
observed network architecture on structural
stability corresponds to the difference between
the partial fitted values for the observed archi-
tecture and the minimum partial fitted values
extracted in the third step described above.
Looking across different levels of mean mutu-

alistic strength, in themajority of cases (18 out of
23, P = 0.004, binomial test) the observed net-
work architectures induce more than half the
value of the maximum net effect on structural
stability (Fig. 6, red solid line). These findings
reveal that observed network architectures tend
to maximize the range of parameter space—
structural stability—for species coexistence.

Structural stability of systems with
other interaction types

In this section, we explain how our structural
stability framework can be applied to other types
of interspecific interactions in complex ecologi-
cal systems. We first explain how structural sta-
bility can be applied to competitive interactions.
We proceed by discussing how this competitive
approach can be used to study trophic inter-
actions in food webs.
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Fig. 6. Net effect of network architecture on structural stability. For each of the 23 observed
networks (table S1), we show how close the observed feasibility domain (partial fitted residuals) is as a
function of the network architecture to the theoretical maximal feasibility domain. The network ar-
chitecture is given by the combination of nestedness and mutualistic trade-off (x axis) across different
values of mean mutualistic strength (y axis). The solid red and dashed black lines correspond to the
maximum net effect and observed net effect, respectively. In 18 out of 23 networks (indicated by
asterisks), the observed architecture exhibits more than half the value of the maximum net effect (gray
regions).The net effect of each network architecture is system-dependent and cannot be used to compare
across networks.
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For a competition systemwith an arbitrary num-
ber of species, we can assume a standard set of dy-
namical equations givenby dNi

dt ¼ Niðai − ∑jbijN jÞ,
where ai > 0 is the intrinsic growth rate, bij > 0
is the competition interaction strength, and Ni

is the abundance of species i. Recall that the
Lyapunov diagonal stability of the interaction
matrix bwould imply the global stability of any
feasible equilibrium point. However, in nonsym-
metric competition matrices Lyapunov stability
does not always imply Lyapunov diagonal sta-
bility (53). This establishes that we should work
with a restricted class of competition matrices
such as the ones derived from the niche space of
(54). Indeed, it has been demonstrated that this
class of competition matrices are Lyapunov diag-
onally stable and that this stability is inde-
pendent of the number of species (55). For a
competition systemwith a symmetric interaction-
strength matrix, the structural vector is equal to
its leading eigenvector. For other appropriate
classes of matrices, we can compute the struc-
tural vectors in the same way as we did with the
effective competition matrices of our mutualistic
model and numerically simulate the feasibility
domain of the competition system. In general,
following this approach we can verify that the
lower the average interspecific competition, the
higher is the feasibility domain, and in turn,
the higher is the structural stability of the com-
petition system.
In the case of predator-prey interactions in

food webs, so far there is no analytical work
demonstrating the conditions for a Lyapunov–
diagonally stable system and how this is linked
to its Lyapunov stability. Moreover, the compu-
tation of the structural vector of an antagonistic
system is not a straightforward task. However,
we may have a first insight about how the net-
work architecture of antagonistic systems mod-
ulates their structural stability by transforming a
two-trophic–level food web into a competition
system among predators. Using this transforma-
tion, we are able to verify that the higher the
compartmentalization of a food web, then the
higher is its structural stability. There is no uni-
versal rule to study the structural stability of
complex ecological systems. Each type of inter-
action poses their own challenges as a function
of their specific population dynamics.

Discussion

We have investigated the extent to which differ-
ent network architectures of mutualistic systems
can provide a wider range of conditions under
which species coexist. This research question is
completely different from the question of which
network architectures are aligned to a fixed set of
conditions. Previous numerical analyses based on
arbitrary parameterizations were indirectly ask-
ing the latter, and previous studies based on local
stability were not rigorously verifying the actual
coexistence of species. Of course, if there is a
good empirical or scientific reason to use a spe-
cific parameterization, then we should take ad-
vantage of this. However, because the set of
conditions present in a community can be constant-

ly changing because of stochasticity, adaptive
mechanisms, or global environmental change,
we believe that understanding which network
architectures can increase the structural stability
of a community becomes a relevant question.
Indeed, this is a question much more aligned
with the challenge of assessing the consequences
of global environmental change—by definition,
directional and large—than with the alternative
framework of linear stability, which focuses on
the responses of a steady state to infinitesimally
small perturbations.
We advocate structural stability as an integra-

tive approach to provide a general assessment of
the implications of network architecture across
ecological systems. Our findings show that many
of the observed mutualistic network architec-
tures tend to maximize the domain of parameter
space under which species coexist. This means
that inmutualistic systems, having both a nested
network architecture and a small mutualistic
trade-off is one of the most favorable structures
for community persistence. Our predictions could
be tested experimentally by exploring whether
communities with an observed network archi-
tecture that maximizes structural stability stand
higher values of perturbation. Similarly, our re-
sults open up new questions, such as what the
reported associations between network architec-
ture and structural stability tell us about the
evolutionary processes and pressures occurring
in ecological systems.
Although the framework of structural stability

has not been as dominant in theoretical ecology
as has the concept of local stability, it has a long
tradition in other fields of research (29). For
example, structural stability has been key in evo-
lutionary developmental biology to articulate the
view of evolution as the modification of a con-
served developmental program (27, 28). Thus,
some morphological structures are much more
common than others because they are compatible
with a wider range of developmental conditions.
This provided a more mechanistic understand-
ing of the generation of form and shape through
evolution (56) than that provided by a historical,
functionalist view. We believe ecology can also
benefit from this structuralist view. The analo-
gous question here would assess whether the
invariance of network architecture across diverse
environmental and biotic conditions is due to
the fact that such a network structure is the one
increasing the likelihood of species coexistence
in an ever-changing world.
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S1 Local and global stability of a feasible equilibrium

point

Ref. 14 introduced a Lyapunov function to grant the global stability of any feasible point

under some constraints on interaction strengths. In the linear Lotka-Volterra version

(h = 0), this theory works as follows. Let B be the interaction-strength matrix, i.e.,

B =

[
β(P ) −γ(P )

−γ(A) β(A)

]
.

Assuming that we can find a strictly positive diagonal matrixD, such thatDB+BtD �

0 (59 ), a Lyapunov function can be constructed to prove the global stability of any feasible

equilibrium. In this case, the matrix B is called Lyapunov-diagonally stable. Practically,

it is a complex task to find a suitable matrix D. A very strict condition would be to

impose that the matrix B itself has to be positive definite.

On the other extreme, we can simply look at the local stability of a feasible equilibrium

by looking at the Jacobian matrix. Assuming that P̃ and Ã is a feasible equilibrium, the

Jacobian is then given by

J = −



P̃1 0 · · · · · · · · · 0

0
. . . . . .

...
...

. . . P̃S(P )

. . .
...

...
. . . Ã1

. . .
...

...
. . . . . . 0

0 · · · · · · · · · 0 ÃS(A)


[
β(P ) −γ(P )

−γ(A) β(A)

]
.

Now, if the real parts of all eigenvalues are strictly negative, the feasible equilibrium is

locally stable. The problem with this approach is that we have to evaluate the Jacobian

and its eigenvalues for every possible feasible point. Fortunately, the concept ofD-stability

solves this issue (15,60,61 ). A matrix M is called D-stable if for every strictly positive

diagonal matrix D, the real part of the eigenvalues of DM are strictly positive. Then, if

the interaction-strength matrix B were to be D-stable, any feasible equilibrium is granted
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to be at least locally stable. Note that Lyapunov-diagonal stability implies D-stability.

Importantly, all these different conditions on stability are imposing constraints on

the interaction strengths. Assuming the strength of the competition matrices β(P ) and

β(A) are set such that without mutualism any feasible equilibrium is stable, then these

different notions of stability constrain the level of mutualistic strength that the system

can handle before losing the stability of a feasible equilibrium. Intuitively, in the linear

Lotka-Volterra case, the mutualistic interactions have to be “weaker” than competitive

interactions to have the stability of a feasible equilibrium.
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S2 Numerical test of the two conjectures for the global

stability of feasible equilibrium

We provide details on the numerical simulations supporting our two conjectures related to

the stability of a feasible equilibrium. Note that for a level of mutualistic strength of zero,

i.e., γ0 = 0, any feasible equilibrium point is automatically globally stable. Indeed, the

competition matrices are chosen positive definite, thus according to Ref. 14, any feasible

equilibrium point is globally stable.

To grant the global stability of any feasible equilibrium when γ0 > 0, one can use the

Lyapunov function developed in Ref. 14. However, in practice, it is a very difficult task to

find the positive diagonal matrix D such that DB +BtD � 0, and even more difficult to

prove it for a full family of matrices. D-stability is a more relaxed condition (15,60 ), but

as before, it is very difficult to prove that a given matrix is D-stable. However, we find

that a very general result can be postulated. First, we need to formulate two conjectures:

Conjecture 1: if the interaction strength matrix M is Lyapunov stable, then M is

D-stable.

Conjecture 2: if the interaction strength matrix M is Lyapunov stable, then any

feasible equilibrium is globally stable.

Recall that for a given network, mutualistic trade-off, and interspecific competition

strength, a matrix B is Lyapunov stable when the level of mutualistic strength is below a

given critical value γ0 < γr0. However, there exists a stronger constraint on B within which

the two conjectures can be proven. If we impose B to be positive definite, i.e., B+Bt to be

Lyapunov stable, then it has already been proven that B is D-stable (15,60 ). This proves

our Conjecture 1. Moreover, following Ref. 14, there exists a Lyapunov function for any

feasible equilibrium point. This proves our Conjecture 2. As for Lyapunov stability, the

matrix B is positive definite if the level of mutualistic strength is below a critical value

γ0 < γs0, which is stronger than the the critical value for Lyapunov stability (γs < γr0).

Thus, our two conjectures are partially proven and need to be numerically check only over
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a restricted range of mutualistic strength (from γs0 to γr0).

For each of the observed networks, we explore the mutualistic trade-off of δ = 0, 0.1

, 0.2, ... 1.5, interspecific competition of ρ = 0.2, and 10 equidistant steps in the level of

mutualistic strength between the two critical values γs0 and γr0 with the following numerical

simulations. For conjecture 1, at each step we generated 1000 samples of strictly positive

diagonal matrices D and tested whether DB is still Lyapunov stable. During this test,

we find no counter-example, thus our conjecture 1 seems to hold.

For conjecture 2, in each step from above, we chose 1000 different feasible equilibria

and 1000 different initial points for the numerical integrator, and tested whether the

numerical simulations converge to the chosen feasible equilibria. We find the numerical

simulations always converged to the same chosen feasible equilibria, indicating that our

conjecture 2 also holds.

If it would be analytically proven that the interaction-strength matrix B is Lyapunov-

diagonally stable when it is only Lyapunov stable, our two conjectures would become

theorems. Indeed, in this case we would have equivalence among Lyapunov stability,

D-stability, and Lyapunov-diagonal stability. Additionally, Lyapunov-diagonal stability

implies global stability for any feasible equilibrium point. Mathematically, our interaction-

strength matrix B can be seen as a two-by-two block Z-matrix, where the diagonal block

contains the positive definite mean-field competition matrices and the off-diagonal blocks

are non-positive matrices. The equivalence of the three types of stability is known for

Z-matrices (40,60,61 ), but remains an open question for block Z-matrices.

Finally, we run numerical simulations to show that the stability conditions derived

within the linear Lotka-Volterra model imply also stability for our nonlinear dynamical

model. What we have to show is that if B is Lyapunov stable, then Bnl is also Lyapunov

stable for any positive plant and animal abundance. As for the two conjectures above, we

explored the mutualistic trade-off of δ = 0, 0.1, 0.2, . . . , 1.5 , interspecific competition of

ρ = 0.2, and 10 equidistant steps in the level of mutualistic strength between zero and γr0.
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For each step we generate twice 1000 diagonal matrices where the elements are sampled

from a uniform distribution between 0 and 1. Then, we multiply the two off-diagonal

blocks of the matrix B by two of these random matrices. This procedure mimics the fact

that in the nonlinear model the mutualistic interactions have a dominator greater than

one. We find that all the generated matrices are Lyapunov stable. This indicates that

the stability conditions derived in the linear version hold for the nonlinear version too.
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S3 Critical value of mutualistic strength

The main consequence of our two conjectures for stability is that to determine the stability

of a feasible equilibrium, it is enough to look at the eigenvalues of the interaction-strength

matrix B. Thus, for computing the critical value in the level of mutualistic strength γr0,

we just need to find the critical value of γ0 at which the real part of one of the eigenvalues

reaches zero. Importantly, as shown in Fig. S1, we find that for any given mutualistic

trade-off and interspecific competition, the higher the level of mutualistic strength, the

smaller the real part of the eigenvalues of B.

Additionally, we find no particular pattern in how the critical level of mutualistic

strength varies with the specific model parameterization. In Figures S2 and S3, we

show how mutualistic trade-off δ and nestedness influence the critical value of mutu-

alistic strength γr0. For this, we randomize the observed networks and compute the slope

of the linear regression between this level of mutualistic strength and nestedness. While

in the majority of cases the slopes increase along with the mutualistic trade-off, we find

that these slopes can be positive as well as negative, meaning that there is no general

pattern.
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S4 Stability and feasibility for strong mutualism

Our study of mutualistic networks is still limited to mutualistic interactions that are

weaker than our critical value of mutualistic strength (γ0 < γr0). Recall that below this

critical value, any feasible point is granted to be globally stable. Mathematically, we

can disentangle the feasibility condition from the stability one, like in the two-species

competition system. Here we explain how our dynamical system reacts to a mutualism

that is stronger than our critical value of mutualistic strength—that corresponds to the

strong mutualism regime (6,39 ). In the case where the handling time is zero (h = 0), the

system usually blows up depending on the sign of the intrinsic growth rates (43 ). In the

case where h > 0, it is always possible for any level of mutualistic strength to have both

feasibility and local stability (39 ). Recall that any set of positive abundances can be turn

into a feasible equilibrium point just by adjusting the intrinsic growth rates, such that

the right side of Equation 2 vanishes.

Now, if we linearize the dynamics around this equilibrium point (A∗
i , P

∗
i ), we get the

following linear Lotka-Volterra system:
dPi

dt
= Pi

(
α̃

(P )
i −

∑
j β

(P )
ij Pj +

∑
j γ̃

(P )
ij Aj

)
dAi

dt
= Ai

(
α̃

(A)
i −

∑
j β

(A)
ij Aj +

∑
j γ̃

(A)
ij Pj

)
,

where α̃
(A)
i =

∑
j β

(A)
ij Ãi −

∑
j γ

(A)
ij P ∗

i /(1 + h
∑

j γ
(A)
ij P ∗

i )2 and the linearized interaction

strength γ̃
(A)
ij = γ

(A)
ij /(1 + h

∑
j γ

(A)
ij A∗

i )
2 (similar expressions hold for plants). In this

linearized version, the mutualistic interaction strengths are now dependent on the abun-

dances at the equilibrium point. Moreover, the linearized interaction strengths are in-

versely proportional to the square of these equilibrium abundances. Then, for any level of

mutualistic strength, if the abundances at the feasible equilibrium are large enough such

that all eigenvalues of

B̃ =

[
β(P ) −γ̃(P )

−γ̃(A) β(A)

]
have a strictly positive real parts, this feasible equilibrium is locally stable. This simple
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mathematical fact implies that now we cannot completely disentangle the feasibility con-

ditions form the stability ones. There exists a proper subspace of the positive quadrant

(S ⊂ RS
≥0) such that when the feasible equilibrium is inside (A∗

i , P
∗
i ∈ S), it is globally

stable only inside the subspace S (14,43 ). In turn, this implies that if the intrinsic growth

rates are too low, a feasible equilibrium may be unstable, and thus the domain of feasi-

bility is also bounded by below. In general, we still have that for any level of mutualistic

strength, the system can be at a feasible and locally stable equilibrium. However, it is

more difficult to determine the complete set of conditions for feasibility and stability.
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S5 Derivation of the structural vector

Here we provide the full analytic derivation of the structural vector. While the derivation

is made with a linear version (h = 0) of the dynamical system (Equation 2), numerically

we find that this is already a good approximation to the general solution (Fig. S4). Since

we are interested in the existence of a feasible equilibrium point, i.e, P ∗
i > 0 and A∗

i > 0

such that evaluated at that point the right side of Equation 2 vanishes, we have to solve

the following linear system of equations:

[
α(P )

α(A)

]
=

([
β(P ) 0

0 β(A)

]
︸ ︷︷ ︸

=C

−
[

0 γ(P )

γ(A) 0

]
︸ ︷︷ ︸

=Γ

)[
P
A

]
. (S1)

We do this by diagonalizing the matrix C−Γ per block, and obtaining two independent

systems of equations, one for the plants and one for the animals. This is achieved by

multiplying by the matrix T = 1 + ΓC−1 both left sides of the equation. This is the same

technique as used in Ref. 6. The new equivalent system is given by:

[
α(P ) + γ(P )(β(A))−1α(A)

α(A) + γ(A)(β(P ))−1α(P )

]
︸ ︷︷ ︸

=

α(P )
eff

α
(A)
eff



=

[
β(P ) − γ(P )(β(A))−1γ(A) 0

0 β(A) − γ(A)(β(P ))−1γ(P )

]
︸ ︷︷ ︸

=

β(P )
eff 0

0 β
(A)
eff



[
P
A

]

(S2)

Using this mathematical transformation, we have moved from an observable param-

eterization space to an effective competition framework. Here, α
(P )
eff and α

(A)
eff are called

effective intrinsic growth rates, and β
(P )
eff and β

(A)
eff are called effective competition rates.

This is called so because the new linear system of equations, for the fixed point of plants

and animals, is equivalent to the system of a purely competitive system within plants and

within animals. Since the form of the equation is the same for the plants than for the

animals, we will present the solution without the superscript (A) or (P) for the sake of

clarity.
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The system that we have to solve has the form αeff = βeffN . However, here we

have to keep in mind that we are interested in how the existence of feasible solutions,

i.e., solutions with strictly positive species abundances (N∗
i > 0), are a function of αeff .

Since the matrix βeff may not be symmetric, we solve the system using its singular value

decomposition βeff (59 ):

βeff =

 | | |
u1
eff u2

eff · · · uSeff
| | |


︸ ︷︷ ︸

=Ueff


λ1

λ2

. . .

δS


︸ ︷︷ ︸

=D


− v1

eff −
− v2

eff −
...

− vSeff −


︸ ︷︷ ︸

=Veff

. (S3)

The columns of matrix Ueff are composed of orthonormal vectors called the left singu-

lar vectors, the rows of matrix Veff are composed of orthonormal vectors called the right

singular vectors. The elements of the diagonal matrix D, called the singular values, are

positive and can be ordered without loss of generality, such that λ1 ≥ λ2 ≥ · · · ≥ λS ≥ 0.

Assuming that all singular values are strictly positive, i.e., the matrix βeff is nonsingular,

the solution for the equilibrium point N∗ is unique and given by

N∗ = β−1
effαeff = V −1

effD
−1U−1

effαeff =
S∑
k=1

vkeff
1

λk
< ukeff |αeff >, (S4)

where < ui|αeff > denotes the scalar product between the vectors ui and αeff .

Now, we will explain how effective growth rates can be chosen such that all species have

strictly positive abundances at the equilibrium point. This needs two extra assumptions on

the matrix βeff : all elements of matrices βteffβeff and βeffβ
t
eff should be positive. Then,

using the Perron-Frobenius Theorem (theorem 8.4.4 in Ref. 60, this implies that all the

elements of the singular vectors u1 and v1 are strictly positive. If we choose αeff = u1
eff ,

then the equilibrium point, which is given by N∗ = 1
λ1
v1
eff , is a feasible solution (i.e.,

N∗
i > 0). Note that any vector collinear to u1

eff leads to a feasible solution, i.e., u1
eff

generates a vector of effective growth rate resulting in feasible solutions. Using effective

growth rates on that specific vector, one can make any mutualistic network perfectly
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persistent (see Figure ??). By imposing N∗
i > 0 to the solution in Equation S4, we derive

the following inequality:

∑S
k=1 < ukeff |αeff >< vkeff |αeff > − < u1

eff |αeff >< v1
eff |αeff >

< u1
eff |αeff >< v1

eff |αeff >
≤ λ2

λ1

. (S5)

This inequality is the generalization of Equation 20 in Ref. 6 to the case where the

competition matrix βeff is not necessary symmetric. This inequality holds for plants and

animals and tell us that the higher the collinearity of the effective intrinsic growth rates

αeff with the leading singular left u1
eff and right v1

eff vectors, the higher is the chance

of obtaining a solution where all species are persistent. The left side of this inequality

shown in Equation S4 is called deviation from the structural vector and the sentence

above can be rephrased as: the lower the deviation, the higher the chance that all species

are persistent.

Effective intrinsic growth rates (α
(P )
eff and α

(A)
eff ) are not the observable parameters of

intrinsic growth rates (α(P ) and α(A)) of plants and animals. Thus, one has to move back

from the effective competition framework to the observable parameter space. This can be

achieved by using the inverse of the matrix T = 1 + ΓC−1 on the left and right leading

singular vectors of β
(P )
eff and β

(A)
eff :

[
α

(P )
L

α
(R)
L

]
= T−1

[
(u

(P )
eff )

1

(u
(A)
eff )

1

]
and

[
α

(P )
R

α
(A)
R

]
= T−1

[
(v

(P )
eff )

1

(v
(A)
eff )

1

]
(S6)

This transformation generates results in a left and right vector of intrinsic growth

rates for both the plants and the animals—what we call the structural vector. As in

the effective framework, the higher the collinearity of the intrinsic growth rates with the

vectors generated by these left and right structural vectors, the higher the number of

persistent species.
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S6 Resampling model

To study the effect of nestedness on the structural stability of a given network, we generate

alternative network architectures using a resampling model. Traditionally, the Erdős-

Rényi model, the swap (or fixed) model, and the probabilistic model have been used.

However, as shown in Figure S8, these models generate networks with a very restricted

range of nestedness.

Here, we use a resampling procedure that is able to generate a large range of nestedness.

This is important in order to generate significantly different nested architectures, and in

order to obtain better statistical estimates of the effect of nestedness on structural stability.

This procedure is based on the matching-centrality statistical model (46 ). Moreover,

these restrictive generative rules are biologically justified by the constraints imposed by

the phylogeny (34 ).

The matching-centrality model aims to infer the probability of a link between two

species (pij, i is an animal, and j is a plant) by assuming that the species are characterized

by a latent trait of centrality (v∗i and f ∗
j ) and a latent trait a matching (vi and fj). The

model is given by

logit(pij) = −κ(vi − fj)2 + φ1v
∗
i + φ2f

∗
j +m. (S7)

In this way, centrality traits quantify variability in degree, while matching traits quan-

tify the assortative mating structure. The parameters κ, φ1, and φ2 are positive scaling

parameters that give the importance of the contributions of the terms. Although these

latent traits are a priori unknown, they can be estimated from the network itself. Then,

based on their estimation, the probability of a link between all pairs of plants and ani-

mals is estimated. Thus, a new network can simply be generated by drawing randomly

the links based on those estimated interaction probabilities. The expected number of

links, as well as the expected degree of the sampled network are equal to the ones of the

14



observed networks. However, this model, which can be viewed as a probabilistic version of

the swap model, also generates a restricted range of nestedness. To relax this constraint,

we generalize the model by introducing a control parameter, that we call temperature T ,

that modulates the level of stochasticity in the model:

logit(p(T )ij) =
1

T

(
−κ(vi − fj)2 + φ1v

∗
i + φ2f

∗
j

)
+m(T ). (S8)

Here, the intercept m(T ) is adjusted for each temperature value such that the expected

number of links is equal to the observed one. When the temperature goes to infinite, our

model converges to the Erdős-Rényi model, when the temperature goes to zero, the system

freezes in the most probable configuration predicted by our model.

As it can be observed in Figure S4, when varying the temperature, our model can

reproduce a larger range of nestedness compared to the ones generated by alternative

sampling models. Importantly, our model predicts also a maximum and a minimum

level of nestedness that the system can reach, when generative rules (represented by the

matching and centrality traits) are introduced.
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Fig. S1: Real part of the eigenvalues of matrix B as a function of the mutualistic strength (γ0). Here
we use the empirical network located in Yakushima Island, Japan (see Table S1), a mutualistic trade-off
δ = 0.5, and an interspecific competition ρ = 0. The vertical dashed line represents the critical value of
mutualistic strength γr0 above which at least one of the eigenvalues has a negative real part.
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Fig. S2: Mutualistic trade-off and critical value of mutualistic strength. For each of 23 observed mutual-
istic networks (see Table S1), this figure illustrates how the mutualistic trade-off influences the maximum
level of mean mutualistic strength that the system can handle to guarantee the stability of any feasible
equilibrium. One can see that, in the majority of cases, the mutualistic trade-off enhances the level of
mutualistic strength.
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Fig. S3: Nestedness and critical value of mutualistic strength. For each of 23 observed mutualistic
networks (Table S1), this figure illustrates, as function of the mutualistic trade off, the linear effect of
nestedness on the maximum level of mean mutualistic strength that the system can handle to guarantee
the stability of any feasible equilibrium. One can see that in the majority of cases, the slopes of this
effect increase along with the mutualistic trade-off.
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Fig. S4: Model-generated nested architectures. For the observed mutualistic network in the Snowy
Mountains, Australia (see Table S1), the figure shows the different distributions of nestedness values
generated by different models: our resampling model, the Erdős-Rényi model, the probabilistic model,
and the fixed or swap model.
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S7 Structural stability across observed mutualistic

networks

Fig. S5: Structural stability in all the observed networks. The darker the color, the larger the positive
effect on the area of structural stability. The lightest regions correspond to architectures with a negative
effect on this area. Dashed lines correspond to different values of mean strength level. Solid lines
correspond to the observed values of nestedness and mutualistic trade-offs.
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Fig. S6: Structural stability and nestedness. Keeping the observed mutualistic trade-off fixed, the figure
shows the extent to which the observed nestedness (solid line) can modulate the area of structural stability
(partial fitted residuals) across different values of mean mutualistic strength.
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Fig. S7: Structural stability and mutualistic trade-offs. Keeping the observed nestedness fixed, the figure
shows the extent to which the observed mutualistic trade-off (solid line) expands the area of structural
stability (partial fitted residuals) across different values of mean mutualistic strength.
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S8 Robustness of results to the choice of ρ and h

Fig. S8: Equivalent to Figure 5 in main text but where handling time is now sampled from a uniform
distribution between 0.08 and 0.12 for each of the species.
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Fig. S9: Equivalent to Figure S5 in SM but with ρ = 0.4.
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Fig. S10: Equivalent to Figure S6 in SM but with ρ = 0.4.
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Fig. S11: Equivalent to Figure S7 in SM but with ρ = 0.4.
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Fig. S12: Equivalent to Figure S5 in SM but with ρ = 0.6.
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Fig. S13: Equivalent to Figure S6 in SM but with ρ = 0.6.
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Fig. S14: Equivalent to Figure S7 in SM but with ρ = 0.6.
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S9 Data

Network Animals Plants Interactions Location
M PL 004 101 12 167 Central New Brunswick, Canada
M SD 001 21 7 50 Princeton, Mercer, New Jersey, USA
M SD 002 9 31 119 Mont Missim, Morobe Prov., New Guinea
M SD 003 16 25 68 Caguana, Puerto Rico
M SD 004 20 34 95 Cialitos, Puerto Rico
M SD 005 13 25 49 Cordillera, Puerto Rico
M SD 006 15 21 51 Fronton, Puerto Rico
M PL 006 61 17 146 Hickling, Norfolk, UK
M PL 007 36 16 85 Shelfanger, Norfolk, UK
M SD 008 10 16 110 Mtunzini, South Africa
M SD 009 18 7 38 Santa Genebra Reserve T1 SE, Brazil
M SD 010 14 50 234 Tropical rainforest, Trinidad
M SD 011 14 11 47 Calton, UK
M PL 013 56 9 103 KwaZulu-Natal region, South Africa
M SD 012 29 35 146 Santa Genebra reserve T2. SE, Brazil
M PL 017 79 25 299 Bristol, UK
M SD 014 17 16 121 Hato Raton, Sevilla, Spain
M PL 019 85 40 264 Snowy Mountains, Australia
M PL 024 18 11 38 Melville, Island, Canada
M PL 025 44 13 143 North Carolina, USA
M PL 033 34 13 141 Ottawa, Canada
M SD 020 33 25 150 Nava Correhuelas, S. Cazorla, SE, Spain
M SD 023 8 15 38 Yakushima Island, Japan

Table S1: Data set. We apply our study to the 23 quantitative mutualistic networks published at
www.web-of-life.es at the time this analysis was conducted (see also Ref. 34). These networks represent
diverse environmental and biotic conditions. Network identifiers consists on a combination of letters
and a specific number: M PL and M SD stand for mutualistic networks of pollination and seed dispersal,
respectively. The order of the networks matches the one used across the panels of Fig. 6.
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