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Summary

1. Studies on biodiversity and ecosystem functioning (BEF) have elicited debate over the interpretation of the

positive relationship between species richness and plant productivity. Manipulating richness cannot be achieved

without affecting composition; it is thus essential to consider the latter in statistical models.

2. We firstly review existing approaches that use species richness as an explanatory variable and propose modifi-

cations to improve their performance. We use an original data set to illustrate the analyses. The classical method

where composition is coded as a factor with a level for each different species mixture can be improved by defining

the levels using clustering. Methods based on ordinations reduce the dimensionality of plant composition and

use the new coordinates as fixed effects; they provide amuch better fit to our observations.

3. Secondly, we develop a newmethodwhere composition is included as a similaritymatrix affecting the residual

variance–covariance. Similarity in composition between plots is treated in the same way as shared evolutionary

history between species in phylogenetic regression.We find that it outperforms the othermodels.

4. We discuss the different approaches and suggest that our method is particularly suited for observational stud-

ies or formanipulative studies where plant diversity is not kept constant byweeding. By treating species composi-

tion in an intuitive and sensible way, it offers a valuable and powerful complement to existingmodels.

Key-words: BEF, biodiversity, composition, ecosystem function, ecosystem services, mixed effects

models, residual correlation structure, species richness

Introduction

Species are being lost at an unprecedented rate, prompting

fears that ecosystem services will suffer. Such concerns have

inspired many manipulative biodiversity experiments such as

Cedar Creek, BIODEPTH or The Jena Experiment (Tilman,

Wedin &Knops 1996; Hector et al. 1999; Roscher et al. 2004)

to examine the causal relationships between biodiversity and

ecosystem functioning (BEF) (Hooper et al. 2012). Some

experiments analyse ecosystem multifunctionality, considering

services such as nutrient cycling and decomposition (Gamfeldt,

Hillebrand & Jonsson 2008; Zavaleta et al. 2010; Mouillot

et al. 2011), but the majority concentrate on the diversity–pro-
ductivity relationship and have typically revealed a positive

relationship between the two (Hector et al. 1999; Van Ruijven

& Berendse 2003; Roscher et al. 2005). The topic has gener-

ated several hypotheses (mass ratio hypothesis, diversity

hypothesis. . .) and a vast literature, but remains contentious

because outcomes from natural ecosystems and synthetic plant

communities differ greatly (Chapin et al. 1997; Grace et al.

2007; Assaf, Beyschlag & Isselstein 2011). The results of the

first experiments stirred up heated debate (Kaiser 2000), where

critics argued that the results of the randomly assembled biodi-

versity-ecosystem functioning experiments were consequences

of ‘hidden treatments’; amongst other issues, the effect of spe-

cies composition was not considered in most of the statistical

analyses (Huston 1997). This has serious consequences, for

example, the so-called variance reduction effect arises from the

overlap in species composition in higher diversity mixtures cre-

ated by random draws from a species pool (Huston 1997),

showing that community composition is not independent

when subplots share species. Furthermore, the idiosyncratic

hypothesis predicts that ecosystem functioning changes with

changing diversity, but unpredictably; as species contribute

unequally to productivity, when members of the community

are lost, species identity/composition is important, not merely

the resulting number of species (Lawton 1994). In response to
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these discussions about the drawbacks of previous experi-

ments, Bell et al. (2009) developed a new experimental design

that allows separation of species richness and species identity.

Attempts to disentangle diversity effects from composi-

tional effects are further complicated by the very different

nature of the two variables: plant species richness is a quan-

titative (integer) variable that is easy to include in statistical

models; composition can be described by the presence/

absence or abundance of each species in the experimental

plots. Composition is thus inherently multivariate, and each

plot can be visualised as a point in an n-dimensional space,

where n corresponds to the total number of species in the

study. The contrasting nature of richness and composition

raises analytical problems when considered together in a

statistical model.

Several researchers have proposed statistical procedures

to account for community composition while analysing the

relationship between species richness and measures of eco-

system function, but each has its limitations. Some are sui-

ted for experimental studies where plots are weeded to

maintain the sown plant composition. Others were pro-

posed for the analysis of natural systems where richness

and composition were not manipulated. Here, we discuss

these existing methods, where species richness is explicitly

used as explanatory variable, and propose new approaches

to incorporate plant composition in the statistical model.

We illustrate the methods using data from an original

study of plant productivity in experimental wildflower

strips in agricultural fields, where repeated diversity levels

were sown in blocks across a set of 12 fields, and the

plant communities were not weeded, thus creating an inter-

mediate situation between natural and controlled designs.

We do not consider alternative models for the study of

BEF relationships, for example those based on the Price

equation (Fox 2006; Fox & Harpole 2008), the diversity

interaction model and its variants (Kirwan et al. 2007;

Connolly et al. 2013), or the method of Bell et al. (2009),

because they do not apply easily to our experiment (see

Discussion section).

The statistical models differ in the way that plant composi-

tion is included. (1) We start with methods that reduce the

dimensionality of the composition variable, typically using

ordination methods like nonmetric multidimensional scaling

(NMDS) or correspondence analysis (CA) (Legendre &

Legendre 1998). Following Kahmen et al. (2005), we use

NMDS to transform plant composition into few quantitative

variables that are then included as fixed factors in the linear

mixed-effects models (LMMs). This method was devised for

the analysis of natural experiments. (2) We then discuss the

treatment of composition as a multilevel categorical variable

(Troumbis et al. 2000; Caldeira et al. 2005; Hector et al.

2011). This approach emerges from manipulative studies

where plant species composition was a priori treated as a ran-

dom effect: a new level is created for each distinct composition,

considered to be one realisation drawn from all possible mix-

tures. However, such an approach does not take into account

the fact that some compositions must be very similar and

others very distinct (Fukami, Naeem & Wardle 2001; Schmid

et al. 2002). (3) To alleviate this limitation, we suggest an

approach where levels are the outcome of a clustering analysis

of plant species composition in the subplots. For this purpose,

we use the partitioning around medoids clustering method

(PAM) based on Jaccard dissimilarities. (4) We propose a new

approach where we account for the fact that floristic similarity

between subplots creates a violation of independence between

observations. We used pairwise Jaccard similarities between

subplots to capture the floristic correlation and included this

similarity matrix in the model as correlation structure. This

approach is built on classical methods dealing with auto-corre-

lated data (e.g. in time-series analyses) or nonindependent

objects (e.g. in phylogenetic regression, where species are

linked by the underlying phylogeny; Freckleton, Harvey &

Pagel 2002).

Methods

To illustrate the different methods of incorporating plant composition

into statistical models, we use an original data set from an experiment

conducted in 12 wildflower strips in Switzerland (Bruggisser et al.

2012; Fabian et al. 2012). Details are provided in Appendix S1 and

Table S1 (Supporting Information). The number of species wasmanip-

ulated by sowing different mixtures in 2007. A treatment to control the

main herbivores and their predators was appliedwith fences of different

mesh size (variable Treat with three levels, C, PE, PHE, for control,

predator exclusion, and predator and herbivore exclusion, respec-

tively). Each of the 12 experimental fields (random factor Field as an

indicator variable) contained the three levels of Treat, and in each level,

four 9 m 9 6 m subplots were sown with different mixtures (2, 6, 12

and 20 sown plant species in a split-plot design with 12 9 3 blocks).

The fieldswere not weeded, and species richness is expressed as the total

number of species S, not as the number of sown species. Plant species

composition was described by the percentage cover of all plant species

in the subplots, evaluated by visual inspection. The response variable is

total above-ground biomass TB (dry weight, expressed in the analyses

as g/0!45 m2), which was estimated from leaf area index (LAI) mea-

surements.We use here data from 2008.

Our analyses were based on LMMs with TB as dependent variable,

Treat and S as fixed effects, and represented the split-plot design by

including random factors for Field and for the Treat block nested

within Field. We included the interaction between Treat and S in all

models. We only considered random intercept models (Zuur et al.

2009) as we often encountered convergence problems with models

including a random slope for S. We used a ‘reference’ model, which

does not include plant composition, as a benchmark for the different

approaches treated below. This referencemodel is given by:

TBijk¼b1ðTreat¼CÞijkþb2ðTreat¼CÞijk : ðSÞijk
þb3ðTreat¼PEÞijkþb4ðTreat¼PEÞijk : ðSÞijk
þb5ðTreat¼PHEÞijkþb6ðTreat¼PHEÞijk : ðSÞijk
þzkþzjjkþeijk

: eqn 1

The indices i denote the observation (subplot), j denote the block

and k denote the field. The parameters b1 and b2 are the intercept and
the slope with species richness for the control treatment, b3 and b4 are
the intercept and the slope for the predator exclusion treatment, and b5
and b6 are the intercept and the slope for the predator and herbivore

exclusion treatment. The terms zk and zj|k are the random factors corre-
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sponding to the field and blocks nested within field (split-plot design),

respectively. The final term eijk represents the residuals. For simplicity,

we define:

BðTreat &SÞijk ¼ b1ðTreat¼CÞijkþb2ðTreat¼CÞijk : ðSÞijk
þb3ðTreat¼ PEÞijk þb4ðTreat¼ PEÞijk : ðSÞijk
þb5ðTreat¼ PHEÞijk þb6ðTreat¼ PHEÞijk : ðSÞijk

for use in the equations that follow.

REDUCING THE DIMENSIONALITY OF COMPOSIT IONAL

DATA

Transforming the floristic data using ordination methods enables

community composition to be represented in few informative

dimensions. The coordinates of the subplots along a chosen num-

ber of axes form the new variables. We used NMDS for this pur-

pose, based on a Jaccard dissimilarity matrix calculated from the

presence–absence of species in each subplot. NMDS uses rank

order rather than Euclidian distances and hence is less prone to be

affected by non-normally distributed data while also being consid-

ered very robust (Minchin 1987). We applied the metaMDS func-

tion of the vegan package (Oksanen et al. 2013), using 1000

random starting points. We chose to represent our data in two

dimensions, which resulted in a stress value of 0!242, indicating

that composition may not be perfectly represented by two axes. It

is, however, known that stress values increase with greater numbers

of observations (Wantzen et al. 2008), and we opted for this num-

ber of axes to avoid including too many explanatory variables in

the LMMs. The statistical model read as follows:

TBijk ¼ BðTreat & SÞijk
þ b7ðXÞijk þ b8ðYÞijk þ zk þ zjjk þ eijk

: eqn 2

Parameters b7 and b8 are the slopes for the NMDS axes, and the

terms zk, zj|k and eijk are the same as in eqn 1.

As far as we are aware, former studies using this approach in natural

experiments with plants (Kahmen et al. 2005; Schultz et al. 2011) or in

controlled experiments with lichens (Maestre et al. 2012) considered

only linear effects of the NMDS variables. The coordinates of the plots

on the different axes were used to reflect composition. However, the

values of the coordinates (X andY for the first and secondNMDSaxes,

respectively) reflect some gradient of similarity in plant composition

between the subplots, and there is no reason a priori to expect these val-

ues to be linearly related to a dependent variable (here TB). Conse-

quently, we investigated potential nonlinear relationships using two

additional analyses. Firstly, we included higher-order terms (i.e.X2,Y2,

XY, X3, Y3, X2Y and XY2) in eqn 2. This approach is similar to using

higher-order terms in spatial analyses to capture nonlinear gradients (a

trend surface analysis; see Borcard, Legendre & Drapeau 1992 or

Legendre &Legendre 1998). Secondly, we used aGeneralized Additive

Mixed Model (GAMM), which uses a smoothing function to link the

response and explanatory variables, thus being very flexible in coping

with nonlinearities in the data.

COMPOSIT ION AS A CATEGORICAL VARIABLE: LEVELS

BASED ON EXPERIMENTAL SPECIES MIXTURE

Working with controlled BEF experiments where subplots were

weeded, Hector et al. (2011) and others (Troumbis et al. 2000;

Fridley 2003; Caldeira et al. 2005; Dimitrakopoulos et al. 2006)

included composition as a categorical variable where a new level

was defined for each different sown mixture. We took the same

approach, resulting in 37 levels. In our case, this does not fully

reflect actual composition, because ‘invader’ plants are not consid-

ered (which would otherwise have resulted in 144 levels, leaving no

degrees of freedom to test the effect of diversity). In the approach

of Hector et al. (2011), this categorical variable was included as a

random effect, which was crossed with experimental site. In our

case, as only four of the 37 levels were present in each field, we

nested the composition variable within block, which is in turn

nested within field. The statistical model is:

TBijk ¼ BðTreat & SÞijk þ zk þ zjjk þ zcðiÞjjjk þ eijk; eqn 3

with symbols as for eqn 2, except the term zc(i)|j|k that corresponds to

the random factor of the compositional category c(i) of observation i

nestedwithin block j andwithin field k.

COMPOSIT ION AS A CATEGORICAL VARIABLE: LEVELS

BASED ON FLORISTIC SIMILARITY

A disadvantage of the above approach is that similarity between

the levels is not taken into account: for example, mixtures sharing

all except one species are treated as completely independent. This

limitation can be seen as problematic especially in observation

studies, and we suggest using a posteriori categorisation of sub-

plots by clustering to define groups based on floristic composi-

tion. In our case, additional advantages are (1) that the analysis

can be performed on all species present, not only those that were

sown and (2) that pairwise similarity between subplots can be

based on species presence/absence or percentage cover. Firstly, we

computed a compositional dissimilarity matrix using Jaccard dis-

similarity (Legendre & Legendre 1998) based on presence–absence
data with the function vegdist from the vegan package (Oksanen

et al. 2013) in R. We then used the nonhierarchical PAM algo-

rithm implemented in the cluster package (Maechler et al. 2012)

to determine group membership. PAM reduces the dissimilarity

within and maximises it between clusters. In our case, the first

maximum of the average silhouette width equalled 0!656, resulting
in three clusters (see Fig. S1, Supporting Information). We trans-

formed these cluster groups into a categorical variable that was

nested within block and within field in the random effects part of

the LMM.

The equation for this statistical model is the same as eqn 3, except

that c(i) refers here to the compositional group of observation i

obtained by the clustering.

COMPOSIT ION AS CORRELATION STRUCTURE

Here, we propose a new approach in which floristic similarity

between subplots is considered to create a violation of independence

between observations, similar to the way that shared phylogenetic

history makes species dependent in phylogenetic regression (Freckl-

eton, Harvey & Pagel 2002). We used the Jaccard coefficient to rep-

resent the similarity in plant composition amongst subplots and

included this similarity matrix in the residual variance of the model.

The model includes a parameter k that multiplies the off-diagonal

elements of the similarity matrix and that can be interpreted as a

measure of the importance of floristic composition. A value of 0

would indicate that composition does not account for TB and that

the subplots are independent with regard to composition; a value of

1 indicates that the contribution of composition to the error variance

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution
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is similar to that generated by the subplots taken as independent.

The equation for this model can be written as:

TBijk ¼ BðTreat & SÞijk þ zk þ zjjk þ !ijk;

with !ijk 'Nð0;RÞ

r2 the error variance, k the parameter capturing the strength of the cor-

relation induced by the plant compositional structure, b(i1j1k1)(i2j2k2) the

Jaccard similarity between pairs of observations i1 and i2 in treat blocks

j1 and j2 within fields k1 and k2, and other terms as in eqn 1. Note that

to have a well-defined variance–covariance matrix, it is necessary that

the eigenvalues of the correlation matrix Σ are all positive, and this for

any value of k between 0 and 1, which can be easily tested by computing

them for different values of k.

The likelihood function for the multivariate normal model with ran-

dom effects is given by:

whereN is the number of observations, TB
(!

is the vector of observation,

B
(!

ðTreat & SÞ is the vector of the fixed effects and Ω is the variance–
covariancematrix.Ω is given by

X ¼ R þ ðrzk Þ
2ZkZ

T
k þ ðrzjjk Þ

2ZjjkZ
T
jjk;

withZk andZj|k the designmatrices for the two random effects, and the

r terms their corresponding standard deviation.

DATA ANALYSIS

Three subplots (sown species richness = 2, Field 8) represented pro-

ductivity outliers and were excluded from the analyses. The variable

TB was Box–Cox-transformed using the car package (Fox & Weis-

berg 2011), with the power parameter c = 0!40. Variables expressing
composition based on NMDS axes were scaled (zero mean and unit

standard deviation) before regression analyses.

Assumptions of normality of residuals were examined with Q–Q
plots. For the models with correlation structure, this raises a problem

as the residuals have a variance–covariance structure defined by Σ in

eqn 4 and that induced by the two random factors. They should be

‘decorrelated’ before checking for normality (Houseman, Ryan&Cou-

ll 2004). This is achieved by the transformation ~r ¼ LTr , with r and ~r

the vector of residuals and of transformed residuals, respectively; LT is

the transpose of the lower triangular matrix, L, from Cholesky decom-

position of Ω(1, the inverse of the matrix Ω (LT can be thought of as

the square root of thematrixΩ(1; seeHouseman, Ryan&Coull 2004).

For LMM analyses, we used the lme procedure of the nlme pack-

age (Pinheiro & Bates 2010), using maximum likelihood (ML) when

model selection was applied, and restricted maximum likelihood

(REML) for parameter estimation once the best model was deter-

mined (Zuur et al. 2009). For the model including species composi-

tion as a similarity matrix in the residual variance, we wrote an R

routine (provided in the Supporting Information) following chapter

9!4!2, on linear mixed models in Davison (2003); ML and REML

methods were used as above. We also checked that our code yielded

results similar to lme for models without correlation, which was the

case. We compared the performance of the different models with

AIC. Because AIC is known to favour overfitting, we also used more

stringent AICc and BIC methods. All analyses were performed with

R (R Development Core Team 2013).

Results

Table 1 presents different measures of performance of the

models, and Table 2 presents the estimates and relative impor-

tance of the parameters of the different models. Descriptive

statistics and detailed results for all the models are given in

Tables S2–S7 (Supporting information). We observe that the

model with composition as correlation in the residual variance

outperforms the others and that most provide a better fit than

the ‘reference’ model (eqn 1) lacking any term accounting for

composition.

Based on the reference model without composition, total

biomass was not significantly different between the three levels

of the exclusion treatment (log-likelihood ratio test with a

model without Treat: P = 0!14; note that the P-values associ-
ated with the factor Treat in Table 2 are all significant because

the intercept is not included; they simply indicate that the bio-

masses are different from 0). The weak effect of the variable

Treat can also be seen in Table 2, where the relative impor-

tance of the explanatory variables are evaluated with differ-

ences in AIC between the full model and themodel without the

variable of interest. There was a significant interaction between

species richness S and the exclusion treatment, with the effect

of species richness being very negative and significant in the

control treatment (C), and more weakly negative and nonsig-

nificant in both the predator exclusion (PE) and predator and

herbivore exclusion (PHE) treatments. We will now see that

including composition does not alter the significance or the

sign of the parameters markedly, but depending on the

approach used, can greatly improve the goodness-of-fit of the

models.

R ¼ r2

1 . . . 0

..

. . .
. ..

.

0 . . . 1

0

B@

1

CAþ k

0 . . . bði1j1k1Þði2j2k2Þ

..

. . .
. ..

.

bði1j1k1Þði2j2k2Þ . . . 0
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2
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3

775; eqn 4

LðTBijkjb1(6;rzk ;rzjjk ;r; kÞ ¼
1

ð2pÞN=2detðXÞ1=2
e
(1=2ðTB

(!
(B

!
ðTreat&SÞÞTX(1ðTB

(!
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!
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REDUCING THE DIMENSIONALITY OF COMPOSIT ION

DATA

The results of the mixed effects model (eqn 2) are given in

Table 2. The relationship between total biomass and species

richness remains negative in the control treatment, but the P-

value is not anymore significant (see Table S4, Supporting

information). Only the first NMDS axis is significant. The

inclusion of plant composition as NMDS axes provides a

major improvement over the model without composition

(DAIC = (20!85). Examination of the NMDS plot (Fig. 1),

where biomass is indicated by the size of the points, clearly

shows that the first axis separates subplots according to

biomass; it is also apparent that species richness is strongly

negatively correlated with the first NMDS axis (indicated by

the colour gradient), which explains why the Treat:S term is

not significant in this model. Including higher-order terms in

the model did not improve the goodness-of-fit, which is con-

firmed by the results of the GAMMs: the AIC with the

smoother is higher than that of the linear model. Thus, there is

no support for nonlinearity in our case.

COMPOSIT ION AS A CATEGORICAL VARIABLE: LEVELS

BASED ON EXPERIMENTAL SPECIES MIXTURE

Coding each different sown plant mixture as a new level of a

categorical variable for composition yields results for the vari-

Table 1. Comparison of the fivesmodels

Model:

Referencemodel
(without
composition)

Composition as
NMDS axes

Composition as
random variable
(based on experimental
mixture)

Composition as random
variable (based on
PAMclustering)

Composition as
correlation in the
residual variance

Log like (321!84 (309!05 (321!84 (320!40 (307!78
AIC 661!68 640!09 663!68 660!80 635!55
DAIC 26!13 5!28 28!13 25!25 0
RelativeAIC 0 0!071 0 0 1
Akaikeweight 0 0!067 0 0 0!933
AICc 645!06 620!16 645!38 642!51 617!26
BIC 688!15 672!45 693!09 690!22 664!97

We provide the maximum likelihood estimation, AIC, DAIC, Relative AIC, Akaike weight, AICc and the BIC for each of the five models. The
DAICi is defined as AICi ( min(AIC), the Relative AIC is defined as exp((0!5* DAIC) and the Akaike weight is define as exp((0!5* DAICi)/sum
(exp((0!5*DAICi)). TheAkaike weight gives the probability that amodel is the best one for the observed data, given the set of candidatemodels.

Table 2. Parameters estimates for the fivesmodels

Model:

Reference
model
(without composition)

Composition as
NMDS axes

Composition as
random variable
(based on experimental
mixture)

Composition as random
variable (based on
PAMclustering)

Composition as
correlation in the
residual variance–covariance

Estimates of the parameters
S:TreatC (0!193 (0!079 (0!193 (0!175 (0!151
S:Treat PE (0!036 0!028 (0!036 (0!026 (0!010
S:Treat PHE (0!092 0!009 (0!092 (0!079 (0!038
TreatC 31!3 28!9 31!3 30!8 30!0
Treat PE 27!8 26!3 27!8 27!5 26!7
Treat PHE 29!7 27!3 29!7 29!5 27!7
k – – – – 0!80
NMDSX – 1!45 – – –
NMDSY – (0!26 – – –
Relative importance of the parameters (difference in AIC between themodel without the covariable of interest and the full model)
S 7!04 (3!27 7!04 4!45 1!88
Treat (1!68 (4!26 (1!68 (0!17 (1!06
S:Treat 0!41 (1!35 0!41 (0!18 2!56
NMDS – 21!6 – – –
Random var. – – (2!00 0!87 –
k – – – – 26!1

S, plant species richness; Treat (C, PE, PHE), exclusion treatment (control, predator exclusion, predator and herbivore exclusion, respectively); k,
parameter indicating the strength of the correlation structure for the residual variance;X andY, the coordinates of the subplots on the first and sec-
ondNMDSaxes, respectively; interaction between variables is indicated by a colon (:). Bold typeface indicates significant parameters at the 0!05 level
(except for Treat levels, which are all significant as the models are run without intercept). Full results of the analyses can be found in Tables S3 to S7,
Supporting information.
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ables S and Treat that are very similar to those in the reference

model (Table 2). Adding composition in the model as a ran-

dom effect produces no improvement in goodness-of-fit over

the reference model. However, this apparent lack of perfor-

mance can be explained by the split-plot design of our experi-

ment that, when combined with the 37 levels for composition,

leaves few degrees of freedom for this effect.

COMPOSIT ION AS A CATEGORICAL VARIABLE: LEVELS

BASED ON FLORISTIC SIMILARITY

The results from the model with plant composition included as

a random variable with three levels derived from PAM cluster

analysis are again very similar to the previous results (Table 2).

Taking composition into account, using this approach

improves the goodness-of-fit in comparison with the reference

model, but only moderately (DAIC = (0!88). The goodness-
of-fit is superior to the model in which the categorical variable

was based on sown species mixture, despite the fact that the

composition term now has 12 times fewer levels.

COMPOSIT ION AS CORRELATION STRUCTURE

Including the similarity in floristic composition as correlation

in the residual variance outperforms the other approaches,

with a DAIC of(26!13 compared to the reference model. The

relationships between TB, S and Treat are again similar to the

previous results (Table 2), but in this analysis, the relationship

between total biomass and species richness within the control

treatment is less significant. The estimated value of the parame-

ter k is 0!80, which indicates that the contribution of the floris-

tic similarity between pairs of subplots is equal to 80% of the

error variance in the subplots taken as independent observa-

tions.

In all, the way composition is included in a model does not

change markedly the biological conclusions about the effect of

species richness on biomass, but greatly affects goodness-of-fit,

and of course the contribution due to plant composition.

When the latter is high, as in the NMDS and the correlation

models, the importance of species richness decreases. Another

interesting result concerns the validation of the models by

visual inspection of the residuals Q–Q plots (see Fig. S2 to S6,

Supporting information): only the model with composition as

correlation nicely fulfils the assumption of normality in the

residuals.

Discussion

Including plant composition in models analysing the relation-

ship between biodiversity and productivity generally yielded a
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Fig. 1. Nonmetricmultidimensional scaling ordination diagram of the subplots. Colour = plant species richness S; Symbol size = total biomass TB
[g!m(2]; and Symbols = exclusion treatment Treat.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution

6 N. Sandau et al.



better fit. However, the way inwhich this factor is incorporated

does matter. Clearly, the best fit is obtained with the use of a

correlation matrix expressing similarity in plant composition

within the residual variance. We also show that the ‘classical’

method of defining composition as a factor, with levels for each

different plant mixture, can be improved simply by taking

composition similarity into account. The approach using

NMDS axes performs much better; our suggestion of adding

higher-order terms does not improve the performance of the

model in our case, butmay bemore useful in other situations.

For our data, the different methods do not alter the general

relationship between total biomass TB and species richness S,

exclusion treatment Treat and the S:Treat interaction. The

general negative relationship between TB and S found in our

system matches the results of earlier analyses where plots were

not weeded (Pfisterer et al. 2004; Petermann et al. 2010); note

that a negative relationship has also been found in natural sys-

tems (Schultz et al. 2011). In our case, the negative effect can

be explained by a strong negative relationship between the

number of sown species and the number of additional subordi-

nate species; the latter with low cover contribute little to bio-

mass production, but much to species richness. The exclusion

treatment with fences (PE and PHE) shows weaker negative

effects (Table 2); this is not due to a lower number of addi-

tional species in these blocks (14!8 and 14!0 respectively, com-

pared with 14!7 in the unfenced C treatment), but possibly to

the effect of higher trophic levels, and will be treated in future

work.

The incorporation of plant composition as a similarity

matrix affecting the residual variance has, to our knowledge,

never before been used in BEF studies. This is an intuitive

approach similar to the philosophy behind phylogenetic

regression, where external information on the observations is

used to account for their statistical dependence. It was by far

the most powerful model in terms of goodness-of-fit. Treating

the observations as nonindependent according to their floristic

similarity thus yielded the best results and revealed a very

strong effect of composition (see relative AIC in Table 2 for

the parameter k).
We chose Jaccard indexmeasured on presence–absence data

as a metric to represent floristic composition between the sub-

plots. There is a palette of metrics to measure ecological resem-

blance, and their choice is dictated by the nature of the data

and the context of the research (see Chapt. 7 of Legendre &

Legendre 1998). Jaccard index is a classical metric that does

not treat double absences as informative (‘asymmetrical’ indi-

ces sensu Legendre & Legendre 1998). Our data set includes

quantitative information on species abundance (percentage

cover), and including this information may be seen as desir-

able, especially in natural systems. In our case, computing the

similaritymatrix with Jaccard index on quantitative data yields

a major improvement in term of AIC (AIC = 605!0 compared

with 635!6 with presence–absence data; note that using per-

centage cover in all models does not change our conclusions).

However, this approachmay be criticised because of a possibil-

ity for circularity in the model: particular species may be abun-

dant and have a strong influence on biomass, thus strongly

influencing both the similarity and the response variable (total

biomass). Nonetheless, it may be contended that two subplots

harbouring such species will have a high similarity and thus

their common contribution to the model will be down-

weighted, thus in effect reducing the potential for circularity.

Here, we chose a conservative approach using Jaccard index

on presence–absence data.
Until now, the incorporation of plant composition with

ordination methods like NMDS has considered only linear

effects of the ordination axes (Kahmen et al. 2005; Zavaleta

et al. 2010; Schultz et al. 2011; Zuo et al. 2012). For our data,

including higher-order terms does not improve the goodness-

of-fit, but we would recommend that they be examined as part

of standard analyses. There is indeed no reason not to consider

the higher-order terms, because the coordinates on the ordina-

tion axes do not bear any meaning per se, but it is the pairwise

distances between these coordinates that can be ecologically

interpreted. Including higher-order terms, as in trend surface

analyses to detect spatial trends, allows the identification of

global nonlinear patterns in the data.

Despite the low support for this model based on Akaike

weights compared with the correlation approach, we see an

advantage in the use of ordinationmethods: they allow visuali-

sation of the data as biplots, where both observations (sub-

plots) and plant species (not shown in Fig. 1) are represented;

information on biomass can be easily included, as shown in

our case with colour coding. Such graphsmay be very useful to

explore the combination of species associated with high (or

low) values of biomass.

The ‘classical’ approach of treating plant composition as a

categorical factor with a level for each different mixture yielded

in our case the worst results in terms of goodness-of-fit. This

approach emerges logically from the design in controlled

experimental settings, where the different sown mixtures are

considered to be randomly drawn from the pool of possible

mixtures. In our case, as we defined the levels based on sown

rather than actual composition (which would have created as

many levels as observations), the poor performance is not sur-

prising. Also, our split-plot design leaves few degrees of free-

dom to detect an effect of composition.We show that applying

a clustering to the plant cover data to create groups according

to their species composition markedly improves the fit, despite

the use of many fewer levels (3 rather than 37). The use of clus-

tering is perfectly suited for observations in natural environ-

ments, representing an analogue to the ‘classical’ approach.

The manipulation of species richness cannot be performed

without influencing plant composition, so it is essential to take

the latter into account in analyses of the diversity–productivity
relationship, as well as for other ecosystem functions. Indeed,

our models including plant composition perform much better

than models disregarding its effect. Due to the very different

nature of the variables, it is not possible to treat species rich-

ness and species composition in an egalitarian way in linear

modelling. This difficulty has motivated the formulation of

diverse approaches. For example, the Price equation has been

used to partition the effects of species richness, species compo-

sition and context dependence on ecosystem functioning (Fox

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution
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2006), with recent extensions accounting for species traits (Fox

&Harpole 2008). Others have suggested representing biodiver-

sity not by the mere number of species, but with measures

accounting for species characteristics based on functional

diversity (Petchey & Gaston 2002; Petchey, Hector & Gaston

2004) or phylogenetic diversity (Faith 1992; Cadotte, Cardi-

nale & Oakley 2008). Recent developments by Kirwan et al.

(2007) and Connolly et al. (2013) decompose in a sensible and

intuitive fashion the contributions to ecosystem functioning

that are due to species individually and in their pairwise inter-

actions. Another methodological breakthrough is the method

of Bell et al. (2009), where an experimental design is proposed

to partition the variance between species identities and species

richness (Harvey et al. 2013). In our case, the presence of sub-

plots with high species richness, including additional subordi-

nate species, precludes the use of both latter methods. Our

approach is flexible and can accommodate such deviation from

strict experimental settings where species richness is main-

tained byweeding.

Ultimately, the choice of a particular technique should be

dictated by the objectives and design of the research. For stud-

ies in natural systems or in experiments without weeding, we

have shown that existing methods using species richness as

explanatory variable can easily be improved, by considering

higher-order terms for NMDS axes or using clustering meth-

ods when treating composition as a factor. However, our new

approach with floristic correlation in the residual variance out-

competes the other models, and we believe that it represents a

powerful addition to existing techniques. Also, it can be easily

tailored for other contexts, as correlation between observations

is not limited to floristic similarity (e.g. Fabian et al. 2013). It

should find its place in future analyses of biodiversity effects on

ecosystem functioning.
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