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Abstract. Let g be a simple complex Lie algebra and h a Cartan subalge-
bra. In this article we explain how to obtain the principal basis of h starting
form a set of generators {p1, · · · , pr} ,r = rank(g), of the invariants polynomials
S(g∗)g . For each invariant polynomial p , we define a G -equivariant map Dp
form g to g . We show that the Gram-Schmidt orthogonalization of the elements
{Dp1(ρ∨), · · ·Dpr(ρ∨)} gives the principal basis of h . Similarly the orthogonal-
ization of the elements {Dp1(ρ), · · · , Dpr(ρ)} produces the principal basis of the
Cartan subalgebra of g∨ , the Langlands dual of g .
Mathematics Subject Classification 2000: 17B.
Key Words and Phrases: Lie algebra, Cartan subalgebra, principal basis, Lang-
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1. Introduction

Let g be a simple Lie algebras over C , let h be a choice of the Cartan subalgebra,
and let {α1, · · · , αr} be a choice for the set of simple roots.. We consider the
principal sl2 -triple, s0 =< e0, f0, h0 >C , given by (Lemma 5.2 of [6])

the semi simple element : h0 = 2ρ∨ =the sum of positive coroots
the positive nilpotent element : e0 = e1 + · · ·+ er =the sum of positive

nilpotent elements corresponding to
simple roots

the negative nilpotent element : f0 such that the well know
commutation relation are satisfied, i.e.
[h0, e0] = 2e0, [h0, f0] = −2f0 and
[e0, f0] = h0.

The restriction of the adjoint action of g to s0 gives a representation of s0

on g . Let

g = V1 ⊕ · · · ⊕ Vr (1)

be the decomposition of this representation into irreducible s0 -modules. There is
exactly r = rank(g) irreducible submodules and their dimensions are dim(Vi) =
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2ki + 1, where the {ki}ni=1 are the exponents of g ([6], Section 5). Without loss
of generality, we can suppose 1 = k1 ≤ k2 ≤ · · · ≤ kr . Each of the modules Vi

has a one dimensional intersection with h , i.e. for each i there exists hi such that
< hi >C= Vi∩h . By definition ([1], Section 7.2) these elements form the principal
basis of h ,

principal basis = {h1, · · ·hr}.

The principal basis was introduce by Kostant to solve a question about
Clifford algebra (see remark 4.9).

If all exponents are distinct, the principal basis is uniquely defined (up
to constant multiples). This is the case for all simples Lie algebras except for
so(2l,C) with l even. In this case there are exactly two exponents with the value
l − 1. Then in the decomposition (1) there are two modules of the same dimen-
sion. Hence the definition of the principal basis has to be refined in this case (see 5).

Let {p̃1, · · · , p̃r} be a choice of homogeneous generators in the ring of
invariant polynomials S(g∗)g . We suppose deg(p1) ≤ · · · ≤ deg(pr). Let {e∗i }i be
an orthonormal basis of g∗ with respect to a choice of an invariant bilinear form
B . We define

dp̃i(x) =
∑

j

∂p̃i

∂e∗i
(x)⊗ e∗i x ∈ g

as a G-equivariant map dp̃i : g→ g∗ , and we consider the set

{dp̃1(ρ
∨), · · · , dp̃r(ρ

∨)}

of elements of g∗ . Using B we can identify g with g∗ and we can consider these
elements as the elements in g . Our first result is (Theorem 4.3)

1. The elements {dp̃1(ρ
∨), · · · , dp̃r(ρ

∨)} form a basis of h .

2. After orthogonalization we obtain the principal basis of h ⊂ g .

Let ρ be the half sum of positive roots. Using B to identify g with g∗ we
construct the set

{dp̃1(ρ), · · · , dp̃r(ρ)}

of elements of g∗ . Our second result is (Theorem 4.8)

1. The elements {dp̃1(ρ), · · · , dp̃r(ρ)} form a basis of h∨ , the Cartan subalgebra
of g∨ , the Langlands dual of g .

2. After orthogonalization we obtain the principal basis of h∨ ⊂ g∨ .

In section 2 we discuss the relation between roots ans coroots and between
the rings S(g∗)g , S(h∗)W , S((g∨)∗)g∨ and S((h∨)∗)W

∨
.
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In section 3 we define the principal three dimensional subalgebra and the
principal basis.

Section 4 contains the proof of the first two results, Theorem 4.3 and 4.8.

In section 5 we study in detail the case of so(2l,C) (l even). This Lie
algebra has two exponents with the same value, and the principal basis defined by
the decomposition (1) is not unique. Let σ be the automorphism of order two of
the Dinkin diagram of type Dl (l even). If we require that the vectors of the prin-
cipal basis be eigenvectors of σ , then the principal basis is unique (up to constant
multiple) and orthogonal (Theorem 5.1).

Acknowledgments I would like to thank Anton Alekseev for very helpful
discussions. This work was supported in part by the Swiss National Science
Foundation.

2. Dual root system

Throughout this section g denotes a simple Lie algebra over the field of complex
numbers, h ⊂ g a Cartan subalgebra, R the root system and B a non-degenerate
invariant bilinear form on g , e.g. the Killing form or the canonical form.

The bilinear form B induces an isomorphism of vectors spaces between g

and g∗ ,

B\ : g
∼=−→ g∗,

and its inverse
B[ : g∗

∼=−→ g.

They are given by B\(x) = B(x, ·) and B[(α) = xα , where xα is the unique
element of g such that B(xα, ·) = α . As the restriction of B to the Cartan
subalgebra h is non degenerate, the restriction of B\ and B[ to the Cartan
subalgebra are isomorphisms. Moreover B induces a non degenerate bilinear form
on h∗ which will by denoted again by B and it is given for all α, β ∈ h∗ by

B(α, β) = B(B[(α), B[(β)).

To each root α ∈ h∗ we associate a coroot α∨ = γ(α) ∈ h ,

h∗ 3 α
γ−→ α∨ =

2

B(α, α)
B[(α) ∈ h. (2)

The dual roots play the role of the roots in the dual root system R∨ of g . The map

γ defines an isomorphism in the sense that γ : R
∼=−→ R∨ . Note that R∨ ⊂ h .

The map γ is canonical, i.e. it is independent of the bilinear form B , but it does
not extend to a vector space isomorphism between h∗ and h .

Now we will recall the definition of the Langlands dual g∨ of g .
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The Langlands dual g∨ is the Lie algebra whose root system is R∨ .

This definition is also equivalent to:

The Cartan matrix of g∨ is the transpose of the Cartan matrix of g.
The Dynkin diagram of g∨ is that of g with arrow reversed.

The Langlands dual of the Langlands dual of g is g . For the root systems
of simple Lie algebras we have the X∨

n = Xn for X = A, D, E, F,G and B∨
n = Cn .

As R spans h∗ , dual to the Cartan subalgebra of g , the dual root system
R∨ spans (h∨)∗ , dual to the Cartan subalgebra of g∨ . We have the following
identifications

h∨ = h∗
∼= by B←→ h = (h∨)∗.

Note that the left and right identifications are canonical, but the middle one de-
pends on B .

Let W and W∨ be the Weyl groups of g and g∨ respectively. Let σα ∈ W
and σα∨ ∈ W∨ be reflections by root α and coroot α∨ respectively. We have that
B[ intertwine them, i.e.

B[ ◦ σα = σα∨ ◦B[.

The isomorphism B[ extends to a graded algebra isomorphism

B[ : S(h∗)
∼=−→ S((h∨)∗),

and because it intertwines the action of the Weyl groups, its restriction to the
Weyl group invariants is a graded algebra isomorphism

B[ : S(h∗)W
∼=−→ S((h∨)∗)W

∨
.

Using the famous result [3] of Chevalley we have that S(h∗)W and S((h∨)∗)W
∨

are generated by r = rank(g) homogeneous linearly independent polynomials. Let
{p1, · · · pr} be a choice of generators of S(h∗)W . Then {p[

1 = B[(p1), · · · , p[
r =

B[(pr)} are generators of S((h∨)∗)W
∨
, i.e.

S(h∗)W = C[p1, · · · , pr]
∼=→ S((h∨)∗)W

∨
= C[p[

1, · · · , p[
r], (3)

Moreover the pi ’s (and also the p[
i ’s) are homogeneous of degree ki + 1, where

the integers {ki}ri=1 are the exponents of g . Note that g and g∨ have the
same exponents. For simple Lie algebra we can choice these generators so that
1 = k1 ≤ k2 ≤ · · · ≤ kr and the p1 is given by the restriction of B to h∗ .

Remark 2.1. Using the Tables of [2], we notice that for a simple Lie algebra
its exponents are all different, except for simple Lie algebras with roots system of
type Dl with l even and greater or equal to 4.

Let Chev : S(g∗)→ S(h∗) be the Chevalley projection. Its restriction to the
invariants induces a graded algebra isomorphism (see [4], Chapter 7, Section 3), i.e

Chev : S(g∗)g
∼=→ S(h∗)W . This isomorphism implies that S(g∗)g and S((g∨)∗)g∨
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are generated by r linearly independent polynomials. We obtain the following
commutative diagram of graded algebra isomorphisms :

S(g∗)g = C[p̃1, · · · , p̃r]

Chev
��

∼= // S((g∨)∗)g∨ = C[p̂1, · · · , p̂r]

Chev
��

S(h∗)W = C[p1, · · · , pr]
B[

// S((h∨)∗)W
∨

= C[p[
1, · · · , p[

r]

(4)

Moreover we can choose the generators so that :

1. Chev(p̃i) = pi and Chev(p̂i) = p[
i,

2. the upper horizontal isomorphism sends the generators p̃i to the generators
p̂i .

Note that p̃1 (resp. p̂1 ) are defined up to a constant by an invariant bilinear form
of g (resp. g∗ ).

3. Decomposition under action of the principal three dimensional
subalgebra, and the principal basis of the Cartan subalgebras

Let s =< e, f, h >C be a sl2 -triple, 1 of a simple complex Lie algebra g . The
restriction of the adjoint representation of g to s give a representation of s on g ,
i.e.

s 3 x→ adx ∈ End(g).

is a Lie algebra homomorphism. Note that sl2 -triple exist, indeed every nilpotent
elements of g can by a Morosov’s Theorem embedded in a TDS (see Section 3
of [6]). We consider the decomposition of g into a direct sum of the irreducible
s-modules

g = V1 ⊕ V2 ⊕ · · · ⊕ Vn. (5)

Without loss of generality we suppose that dim(V1) ≤ dim(V2) ≤ · · · ≤ dim(Vn).
In general the number n of irreducible s-modules is greater that the rank of g

(see [6], Section 5), and if its equal to r then s will be call principal sl2 -triple
(Theorem 5.2 in [6]).

We define a particular principal sl2 -triple, s0 =< h0, e0, f0 >C , with

h0 = 2ρ∨, e0 =
∑

i

ei and f0 =
∑

i

cifi, (6)

where ρ∨ is the half sum of positive coroots, ei (rep. fi ) are the root vectors
corresponding to the simple roots αi (resp. −αi ) such that B(ei, fi) = 1 and the
ci are given by the relation

∑
i ciB

[(αi) = 2ρ∨ . Moreover each principal sl2 -triple
is conjugate to (6), and if we require the semisimple element to be in h , then the
principal sl2 -triple is given by (6). It is of course possible to multiply each ei by

1The commutation relations are [h, e] = 2e , [h, f ] = −2f and [e, f ] = h .
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a scalar and then divide fi by the same scalar.

Using s0 in the decomposition (5) we have that n = rank(g) and each Vi

is an irreducible s0 -module. Moreover dim(Vi) = 2ki + 1, where the {ki}ri=1 are
the exponents of g . This facts implies that for all i the intersection of Vi and h

is one dimensional, i.e.

for all i, there exist hi ∈ h such that < hi >C= Vi ∩ h.

These elements form a basis of h . This basis is called the principal basis of
h ([1], Section 7),

principal basis of h = {h1, · · · , hr}. (7)

For ki 6= kj we have that hi is orthogonal to hj relatively to B . Indeed,

we have that ade0adf0(hi) = ki(ki+1)
2

hi , then using the invariance of B we conclude
that for ki 6= kj , hi is orthogonal to hj . Hence if all exponents are distinct, up
to a constant, the principal basis is unique. In fact a similar argument shows that
the decomposition (5) under s0 is an orthogonal decomposition. The only cases
when the are two equal exponent occur for the Lie algebras with the root system
of type Dl with l even, i.e. for so(2l,C). We study this case in 5.

Remark 3.1. As vector space V1 = s0 , then we have (up to a constant)
h1 = ρ∨ .

Remark 3.2. The elements {hi}ri=1 of the principal basis are characterize by

1. hi ∈ Ker(adki+1(e0)),

2. hi /∈ Ker(adki(e0)),

3. for i 6= j , hi⊥hj .

Remark 3.3. If an element h ∈ h satisfies adki+1(e0)(h) = 0, then h ∈
(V1 ⊕ · · · ⊕ Vi) ∩ h .

We will end this section by giving two examples of principal basis.

Example 3.4. Let g be the Lie algebra of type G2 . Its Cartan subalgebra h

is 2-dimensional. Let α1 and α2 be a choice of the simples roots. We choose B
to be the canonical form, i.e. on simple root it is given by

B(α1, α1) = 2 B(α1, α2) = −1 B(α2, α2) =
2

3
.

The coroots are then given by

α∨1 = B[(α1) α∨2 = 3B[(α2).

The first vector in the principal basis is the sum of the positive coroots, and the
second is one orthogonal to the first. They are (up to constant)

h1 = 5α∨1 + 3α∨2 h2 = −3α∨1 + α∨2 .
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Example 3.5 (Principal basis for sl(3,C)). Let eij be the canonical basis of
Mat(3,C). The standard choice of basis for the Cartan subalgebra of sl(3,C)
is h̃1 = e11 − e22 and h̃2 = e22 − e33 . The positive (resp. negative) nilpotent
elements are given by e12 , e23 and e13 (resp. e21 , e32 and e31 ). In terms of this
basis the principal sl2 -triple s0 is given by h0 = 2h̃1 + 2h̃2 , e0 = e12 + e23 and
f0 = 2e21 + 2e32 . In the decomposition (5) the two irreducible s0 -modules are
given by

V1 =< e0, h0, f0 >C,

V2 =< e13, e23 − e12, h̃1 − h̃2, e32 − e21, e31 >C .

Then the principal basis is given by (up to constants)

{h1 = h̃1 + h̃2 = e11 − e33, h2 = h̃1 − h̃2 = e11 − 2e22 + e33}.

By a direct calculation we verify that it is an orthogonal basis.

4. How to obtain the principal basis of the Cartan subalgebra using
the generators of the invariants polynomials

Let g be a simple Lie algebra over the complex field, and p̃ ∈ S(g∗)g an invariant
polynomial. We consider dp̃ the differential of this polynomial. It is defined by

dp̃ =
∑

i

∂p̃

∂e∗i
⊗ e∗i ∈ S(g∗)⊗ g∗,

where {e∗i } is an orthonormal basis of g∗ . We view this differential as an map
form g to g∗ , i.e.

g 3 x −→ dp̃(x) =
∑

i

∂p̃

∂e∗i
(x) · e∗i ∈ g∗.

Let G = Int(g) be the group of inner automorphisms of g . It is generated by
the elements of the form eadx with x ∈ g nilpotent. The invariant bilinear form B
is invariant by G , i.e. for all g ∈ G and x, y ∈ g we have B(g ·x, y) = B(x, g−1 ·y).
Moreover, G intertwines the isomorphisms B[ and B\ .

Proposition 4.1. The map dp̃ is G-equivariant, i.e. for all g ∈ G

dp̃ ◦ g = g ◦ dp̃.

Proof. Let x ∈ g and g ∈ G , then dp̃(g · x) =
∑

i
∂p̃
ei

(g · x)ei . Let yi = g−1xi

be a new orthonormal basis of g . Then using the fact that p is G-invariant we
obtain

∑
i

∂p̃

ei

(g · x)ei =
∑

i

∂p̃

g · yi

(g · x)g · yi =
∑

i

∂(g · p̃)

g · yi

(g · x)g · yi =
∑

i

∂p̃

yi

(x)g · yi.
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Let Dp̃ be the composition of dp̃ with B[ , i.e.

Dp̃ = B[ ◦ dp̃ : g −→ g.

Obviously Dp̃ is G-equivariant.

We can consider the same construction with an invariant polynomial p ∈
S(h∗)W . Then we obtain the map

Dp : h −→ h.

The following proposition relates these two constructions.

Proposition 4.2. Let p ∈ S(h∗)W and p̃ ∈ S(g∗)g be invariant polynomials
such that Chev(p̃) = p. Then for all h ∈ h we have

Dp(h) = Dp̃(h).

Proof. By Lemma 7.3.6 of [4], there exist a ∈ S(g∗)gn∗+ such that p̃ = p + a .
But Da(h) = 0 because h∗ is orthogonal to n∗+ .

Let {p̃1, · · · , p̃r} be a choice of generators of S(g∗)g , with deg(p1) ≤
deg(p2) ≤ · · · ≤ deg(pr). Let ρ∨ ∈ h be the half sum of positive coroots. By
the preceding proposition the elements

{Dp̃1(ρ
∨), · · ·Dp̃r(ρ

∨)} (8)

are in h . Note that up to a constant we can chose p̃1 such that Dp̃1(ρ
∨) = ρ∨ .

By Theorem 3 of [8] with A = ρ∨ , this family is linearly independent. Hence it is
a basis of h . Using the Gram-Schmidt orthogonalization process on this basis we
obtain the orthogonal basis :

{Dp̃1(ρ
∨), · · ·Dp̃r(ρ

∨)}

Gram Schmidt
��

{h1 = Dp̃1(ρ
∨),

h2 = Dp̃2(ρ
∨)− λ21Dp̃1(ρ

∨),

· · · ,
hr = Dp̃r(ρ

∨)− λr,r−1Dp̃1(ρ
∨)− · · · }.

(9)

The first result of this section is the following Theorem.

Theorem 4.3. The orthogonal basis (9) of h is (up to constant multiple) the
principal basis of the Cartan subalgebra h of g.

Before we prove this Theorem we will show how it work in the Examples
3.4 and 3.5.
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Example 4.4 (Continuation of Example 3.4). We will compute the principal
basis using Theorem 4.3 and then compare with the previous result. Let {x, y} be
the orthonormal basis of the Cartan subalgebra given by

x =
α∨1√

2
y =

√
2

3

(
α∨2 +

3

2
α∨1

)
.

Let {x∗, y∗} be the dual basis. A choice for generators of S(h∗)W is given by

p1 = (x∗)2 + (y∗)2 p2 = 33(x∗)6 + 27(y∗)6 + 45(x∗)4(y∗)2 + 135(x∗)2(y∗)4.

The differentials of these polynomials computed at ρ∨ give (up to constant multi-
ple)

Dp1ρ
∨ ∝ ρ∨ Dp2ρ

∨ ∝ 2425α∨1 + 1383α∨2 .

We remark that they are not orthogonal, bur after orthogonalization we obtain
the principal basis.

Remark 4.5. The previous example shows that the orthogonalization is indis-
pensable.

Example 4.6 (Continuation of example 3.5). We will compute the principal
basis using Theorem 4.3 and then compare with the previous result. A choice of
generators of S(h∗)W is given by ([7], Section 3),

p1 = (e∗11)
2 + (e∗22)

2 + (e∗33)
2 p2 = (e∗11)

3 + (e∗22)
3 + (e∗33)

3,

where {e∗11, e
∗
22, e

∗
33} is the dual basis of {e11, e22, e33} . As explain in [7], these

polynomials belong to the dual of the Cartan subalgebra of gl(3,C). We work
with the basis {h̃∗1 = e∗11 − e∗22, h̃

∗
2 = e∗22 − e∗33} completed by the central element

c∗ = e∗11 + e∗22 + e∗33 . In this basis these polynomials are written as follows:

p1 = (h̃∗1)
2 + (h̃∗2)

2 + h̃∗1h̃
∗
2 + (c∗)2

p2 = 2(h̃∗1)
3 − 2(h̃∗2)

3 + 3(h̃∗1)
2h̃∗2 − 3h̃∗1(h̃

∗
2)

2 + terms with c∗.

Remark that < h̃∗1, h̃
∗
2 >C ⊥ < c∗ >C . Their differentials evaluated at ρ∨ are (up

to a constant)

Dp1(ρ
∨) = h̃1 + h̃2 Dp2(ρ

∨) = h̃1 − h̃2.

This is fortunately the same basis as before. Note that in this case the choice of
polynomial is unique (up to constants) and we do not need to orthogonalize.

Proof. [Proof of Theorem 4.3] This proof works if all exponents are different.
This is the case for all simple Lie algebras except for type Dl with l even. We
prove this case in 5.

1. Using Theorem 3 of [8] with A = ρ∨ , we conclude that the elements (8) are
linearly independents.
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2. Let s0 be the principal sl2 -triple given by (6). Then Dp̃i(ρ
∨) ∈ Ker(adki+1

e0
).

Indeed using the G-equivariance of Dp̃i) (Proposition 4.1) for etade0 (t a
parameter) we have

(etade0Dp̃i)(ρ
∨) = Dp̃i(e

tade0ρ∨) = (Dp̃i ◦ (1 + tade0))(ρ
∨),

but and Dp̃i is a polynomial of degree ki , and the term in tki+1 is vanishes.

3. The step (b) implies that for all i

Dp̃i(ρ
∨) ∈ (V1 ⊕ · · · ⊕ Vi) ∩ h.

4. Then if we orthogonalize the family

{Dp̃1(ρ
∨), · · · , Dp̃r(ρ

∨)}

as (9) we obtain (up to constant multiple) the principal basis of h .

This Theorem provides a method to compute the principal basis of the Car-
tan subalgebra of h using a set of generators of the invariants polynomials S(g∗)g .
Now we will give the second result of this section, which explain how to obtain the
principal basis of the Cartan subalgebra of g∨ the Langlands dual of g using a set
of generators of S(g∗)g .

As explained before dp̃ is an G-equivariant map from g to g∗ . We consider
the following map, which is also G-equivariant,

D̂p̃ = dp̃ ◦B\ : g∗ −→ g∗.

We have the analogue of Proposition 4.2

Proposition 4.7. Let p ∈ S(h∗)W and p̃ ∈ S(g∗)g be invariant polynomials
such that Chev(p̃) = p. Then for all λ ∈ h∗ we have

D̂p(λ) = D̂p̃(λ).

The proof is the same as for Proposition 4.2.

The second result of this section is the following theorem.

Theorem 4.8. Let ρ be the half sum of the positive roots of g. Let
{D̂p̃1(ρ), · · · , D̂p̃r(ρ)}

be a family of element of h∗ , the Cartan subalgebra of g∨ . Then

1. This family is linearly independent.

2. Using the Gram-Schmidt process as in (9) we obtain (up to constant) the
principal basis of h∨ ⊂ g∨ .
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Proof.

1. Let p ∈ S(h∗)W be an invariant polynomial and define p[ = B[(p) ∈
S((h∨)∗)W

∨
. As for p , we consider dp[ to be a map from h∗ to h . We

have the following relation between dp and dp[ ,

dp ◦B[ = B\ ◦ dp[.

2. We take p̃ ∈ S(g∗)g such that Chev(p̃) = p . Using the Proposition 4.7 and
(a) we have for all λ ∈ h∗ ,

D̂p̃(λ) = D̂p(λ) = (B\ ◦ dp[)(λ).

3. We take p̂ ∈ S((g∨)∗)g∨ such that Chev(p̂) = p[ . We use the equalities in
(b) to obtain

D̂p̃(λ) = D̂p(λ) = (B\ ◦ dp[)(λ) = (B\ ◦ dp̂)(λ).

The proof of the last equality is the same as for the Proposition 4.2 with g∨

at the place of g .

4. By (c) point we see that the family {D̂p̃1(ρ), · · · , D̂p̃r(ρ)} is the same as
the family {(B\ ◦ dp̂1

[)(ρ), · · · , (B\ ◦ dp̂r
[)(ρ)} . The result (a) is given by

Theorem 3 in [8] and the result (b) by using Theorem 4.3 with g∨ replacing
g .

Remark 4.9 (The Kostant conjecture about the principal basis). Let Cl(g, K)
be the Clifford algebra of the Lie algebra g and K its Killing form. Consider
the Harish-Chandra projection Φ : Cl(g)g → Cl(h) defined by the decomposition
Cl(g)g = Cl(h)⊕Cl(g)n+ ∩Cl(g)g , where n+ are the positives nilpotent elements.
In particular Kostant showed that the image of the Harish-Chandra projection of
the primitive generators of Cl(g)g ∼=

∧
gg are contained in h ⊂ Cl(h). Kostant

conjectured that the Harish-Chandra projection of the primitive generators of g

gives the principal basis of the Cartan Subalgebra of the Langlands dual g∨ (here
using K , h and h∨ are identified). This conjecture was partially proven by Bazlov
in his thesis [1].

5. The so(2l, C) case (l even)

Throughout this section g = so(2l,C) with l even, h ⊂ g is a Cartan subalgebra,
W the Weyl group and B is an invariant bilinear form. The root system of g is
Dl and the exponents are given by [2], Table IV

{1, 3, 5, · · · , l − 1, l − 1, · · · , 2l − 5, 2l − 3},

Then in the decomposition of g into irreducible s0 -modules,

g = V1 ⊕ · · · ⊕ Vl/2 ⊕ Vl/2+1 ⊕ · · · ⊕ Vl,
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the modules Vl/2 and Vl/2+1 have the same dimension 2l − 1.

This decomposition does not determine Vl/2 and Vl/2+1 uniquely. In-
deed Vl/2 and Vl/2+1 are generated by the highest weight vectors v1 and v2 , i.e.
Vl/2 = U(so)v1 and Vl/2+1 = U(so)v2 . But v1 + v2 and v1 − v2 also generate
two irreducible so -modules whose the direct sum is equal to Vl/2 ⊕ Vl/2+1 , i.e.
U(so)(v1 + v2)⊕ U(so)(v1 − v2) = Vl/2 ⊕ Vl/2+1 .

The following decomposition is uniquely determined by the action of the
principal sl2 -triple,

g = V1 ⊕ · · · ⊕ Vl/2−1 ⊕W ⊕ Vl/2+2 ⊕ · · · ⊕ Vl, (10)

where W = Vl/2⊕ Vl/2+1 . Note that this decomposition is orthogonal relatively to
B .

Hence the principal basis is uniquely determined modulo a choice of two
linearly independent vectors in W ∩ h , i.e.

principal basis of h = {h1, · · · , hl, hl+1, · · · , hr},

with hi such that < hi >C= Vi ∩ h for all i 6= l/2, l/2 + 1 and < hl/2, hl/2+1 >C=
W ∩ h . Moreover if we chose hl/2 and hl/2+1 to be orthogonal, then the principal
basis is uniquely determined modulo a rotation in W .

Now we will give the modifications in the proof of Theorem 4.3.

(a) (b) The first and second step remain true.

(c) The third step is modified as follows: for all i 6= l/2, l/2 + 1 we have

Dp̃i(ρ
∨) ∈ (V1 ⊕ · · · ⊕ Vi) ∩ h,

and for i = l/2 or i = l/2 + 1 we have

Dp̃i(ρ
∨) ∈ (V1 ⊕ · · · ⊕W ) ∩ h.

(d) The fourth step reaming true with a suitable choice of basis vectors in W ∩h .

Let {α1, · · · , αl} be the l simple roots of g . We define the automorphism
σ by

σ(αi) = αi (i = 1, · · · l − 2) σ(αl−1) = σ(αl) σ(αl) = σ(αl−1).

This automorphism induces an automorphism on the Lie algebra, see Sec-
tion 7.9 of [5]. As this automorphism is of order two it is diagonalizable and its
eigenvalues are +1 and −1. Let g = g0⊕g1 be the decomposition in the eigenspace
g0 , resp. g1 , of eigenvalues +1, resp. −1. In [5], Chapter 8, Kac showed that
the roots system of g0 is Bl−1 . This implies that the dimension of g1 is 2l − 1.
Indeed dim(Dl) = l(2l − 1) and dim(Bl−1) = (l − 1)(2l − 1).

We denote by B the canonical form of g , i.e. B(αi, αi) = 2.
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Theorem 5.1. Consider the decomposition (10) of g, we have

1. All the irreducible s0 -modules Vi are contained in the eigenspace g0 .

2. The s0 -module W is invariant by σ , i.e. σ(W ) = W .

3. The automorphism σ provides the decomposition of W into W = W0⊕W1 ,
where Wi ⊂ gi . Moreover, this is a decomposition into two irreducible s0 -
submodules and they are orthogonal.

Hence if we require that the elements of the principal basis should be eigen-
vectors of σ , then the principal basis is uniquely determined (up to constants).

The proof of this Theorem follows from the next three propositions.

Proposition 5.2. Let s0 =< e0, f0, h0 > be the principal sl2 -triple. Then its
adjoint action commute with the automorphism σ , i.e.

σ ◦ ade0 = ade0 ◦ σ σ ◦ adf0 = adf0 ◦ σ σ ◦ adh0 = adh0 ◦ σ.

Proof. The principal TDS s0 is given by

h0 = 2(l − 1)α∨1 + 2(2l − 3)α∨2 + · · ·+ (l − 2)(l + 1)α∨l−2 + l(l − 1)/2(α∨l−1 + α∨l ),

e0 = e1 + · · · el,

f0 = 2(l − 1)f1 + · · ·+ (l − 2)(l + 1)fl−2 + l(l − 1)/2(fl−1 + fl),

where ei is the positive nilpotent element corresponding to the simple root αi , and
the fi is the corresponding negative nilpotent elements such that B(ei, fi) = 1.
Clearly they are eigenvectors of eigenvalues +1. The result follows from the
equation

σ(ade0x) = adσ(e0)σ(x) = ade0σ(x).

The proof for h0 and f0 is similar.

Proposition 5.3. Let V ∈ g be a irreducible s0 -module. If there exist x ∈ V
such that σ(x) = x (or σ(x) = −x), then V ⊂ g0 (or V ⊂ g1 ).

Proof. Let x ∈ V be a eigenvector of eigenvalue λ for σ (λ = ±1). Then
using Proposition 5.2, we have that all vectors y ∈ V = U(s0)x are eigenvectors
of eigenvalue λ .

Before the next proposition we introduce the standard choice for the gen-
erators of S(h∗)W .

Let {e∗1, · · · e∗l } be the standard orthonormal basis of h∗ . The simple roots
are given by

α1 = e∗1 − e∗2 · · · αl−1 = e∗l − e∗l−1 αl = e∗l + e∗l−1.
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Recall that on the elements of the basis the canonical bilinear invariant form is
given by B(e∗i , e

∗
j) = δij . In term of this basis the standard generators are given

by ([7], Section 3)

pi =
∑

j

(e∗j)
2i i = 1, · · · , l − 1 and pe = e∗1e

∗
2 . . . e∗l .

The half sum of positive roots is given by

ρ∨ = (l − 1)(e1) + (l − 2)(e2) + · · ·+ el−1,

where {e1, · · · , el} is the dual basis of {e∗1, · · · , e∗l } .Note that the two polynomials
of degree l are pe and pl/2 .

The differential of these generators computed at ρ∨ are,

Dp1(ρ
∨) = 2ρ∨

Dp2(ρ
∨) = 4 · 23((l − 1)3e1 + · · ·+ el−1)

· · ·
Dpe(ρ

∨) = l! · 2l−1el

Dpl/2(ρ
∨) = · · ·
· · ·

Dpl−1(ρ
∨) = (2l − 2)22l−3((l − 1)2l−3e1 + · · ·+ el−1)

We remark that < Dp1(ρ
∨), · · · , Dpl−1(ρ

∨) >C is orthogonal to
< Dpe(ρ

∨) >C .

From these calculations we deduce the next proposition

Proposition 5.4. We have that Dpi(ρ
∨) ∈ g0 for all i = 1, · · · , l − 1 and

Dpe(ρ
∨) ∈ g1 .

Now we prove the Theorem 5.1.

Proof. [Proof of Theorem 5.1]

1. We orthogonalize the basis (11) and obtain the principal basis {h1, · · · , hl} .
Note that all hi except hl/2 are in the space < e1, · · · , el−1 >C and hl/2 ∈<
el >C . By Proposition 5.3, this proves the first assertion.

2. The second assertion follows from Proposition 5.3 and the fact that W =
U(s0) < hl/2, hl/2+1 >C .

3. For the third assertion we have that W0 = U(s0)hl/2+1 and W1 = U(s0)hl/2 .
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