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ScienceDirect
Classical biological control (also called importation biological

control) of weeds has a remarkable track record for efficiency

and safety, but further improvement is still needed, particularly

to account for potential evolutionary changes after release.

Here, we discuss the increasing yet limited evidence of post-

introduction evolution and describe approaches to predict

evolutionary change. Recent advances include using

experimental evolution studies over several generations that

combine -omics tools with behavioral bioassays. This novel

approach in weed biocontrol is well suited to explore the

potential for rapid evolutionary change in real-time and thus

can be used to estimate more accurately potential benefits and

risks of agents before their importation. We outline this

approach with a chrysomelid beetle used to control invasive

common ragweed.
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Introduction
Effectiveness (impact) and safety (host-specificity) are

both crucial aspects in developing a successful weed

biocontrol program [1] (glossary). When applying the

classical management, rigorous studies are required both

before and after release of the biological control agent.

Pre-release studies are needed to predict and prevent

undesirable outcomes, while post-release studies are

needed to confirm and mitigate such outcomes. Schwarz-

länder et al. [2] found that almost a quarter of all releases

caused heavy impact and that across countries/regions
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nearly two-thirds of targeted weeds experienced some

level of control. Concerning risks, Hinz et al. [3�] reported

that in recent decades, less than 1% of releases (only two

agents released during 1991–2008) caused sustained non-

target attack, that is, persistent populations on non-target

species regardless of the presence of target weed.

Although this is a remarkable track record for efficiency

and safety, potential evolutionary changes post-release

remain a fundamental area of uncertainty associated with

introductions of organisms into new habitats [4].

Scaling up from species interactions at the individual and

population level to forecasting species distributions and

impact is an especially challenging task, as abiotic toler-

ances, dispersal rates, and biotic interactions, vary in time

and space. While understanding the outcomes of species

interactions from an ecological viewpoint is highly rele-

vant for practicing biocontrol, potential evolutionary

changes are largely believed to be not assessable pre-

release [5]. Here, we explore how to increase the predic-

tive power of effectiveness and host-specificity in weed

biocontrol after release by assessing the evolutionary

potential pre-release.

Evolutionary changes in weed biocontrol
programs
The plant invader

Swift and dramatic evolutionary changes in invasive alien

plants post-introduction are well documented. The rapid

spread of plant invaders has been associated with a

multitude of factors, including adaptation to climate

and escape from biotic constraints, such as from natural

enemies [6–8]. However, in spite of the 1555 intentional

releases of 468 biocontrol agents (BCAs) species against

175 target weed species as of 2012 [9], there are yet few

experimental studies of evolutionary responses in biocon-

trol systems where an invasive species becomes re-asso-

ciated with its key natural enemies now used as a BCA in

the new range. Stastny and Sargent [10�] reported that the

chrysomelid beetle Neogalerucella calmariensis L., intro-

duced into Canada for control of invasive Lythrum salicaria
L. can rapidly select for increased resistance (increased

antiherbivore defenses) and tolerance (faster regrowth).

Fukano and Yahara [11] studied introduced common

ragweed, Ambrosia artemisiifolia L., populations in Japan

and found that populations where the exotic chrysomelid

beetle Ophraella communa LeSage appeared during the

past decade presented stronger defensive capabilities (on
www.sciencedirect.com
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Glossary

Artificial selection: a process in the breeding of animals and in the

cultivation of plants by which the breeder chooses to perpetuate only

those forms having certain desirable inheritable characteristics

Biological control of weeds and invasive plants: the use of an

antagonist (mainly arthropods (insects and mites) and plant

pathogens (fungi, bacteria, viruses, and nematodes) to bring about

suppression of noxious plants, such as agricultural weeds or plant

invaders. Three principal methods can be distinguished based on

target habitat, origin of the control agent, and the amount of initial

inoculum used: (i) The inoculative or classical approach, also called

importation biological control, aims to control naturalized weeds by

the introduction of exotic control organisms from the weed’s native

range; (ii) The inundative or bioherbicide method uses periodic

releases of an abundant supply of a native or exotic control agent over

the entire weed population to be controlled; (iii) the system

management or conservation/augmentative approach aims to

stimulating the build-up of a disease epidemic or insect outbreak of a

native agent on the target weed population [1]

BACIP (Before–After Control-impact) design: an experimental

design used to assess an environmental impact using observations

before and after the environmental perturbation, specifically with

paired plots one with the impact and the other as a non-impacted

control [42]

Common garden experiment: A method for inferring genetic

differences among groups: If individuals from different groups (e.g.

populations) are brought together and reared in a common environment,

then phenotypic differences among them are assumed to reflect

differences in genotype not environment, provided steps are taken to

eliminateeffectsof theparentalenvironment that carryover to offspring [43]

‘Evolve and Resequence’(E&R) studies: an approach to assess

how populations evolve within one or more controlled environments

and are then surveyed with genomic sequencing [44,45]; becoming a

popular approach to study the genetic basis of adaptation. The basic

principle is the identification of the target of selection in evolving

populations by genome-wide sequencing of pools of individuals (

pool-seq, cf. below)

Experimental evolution: an “experimental approach in which the

phenotypic and/or genomic change is monitored over multiple

generations during which experimenters apply a predetermined

selective pressure under controlled demographic conditions” [28�].
Genotype by environment interaction: differing responses of two

or more genotypes to environmental variation. Often measured as a

norm of reaction [4]

Natural experiment: a method of hypothesis testing in ecological

studies that takes advantage of an environmental effect that impacts

one area but not another [46]

Whole-genome sequencing of pools of individuals (pool-seq): a

protocol used for population genomic studies consisting of

sequencing libraries of pooled DNA samples that do not require

individual tagging of sequences. Pool-seq provides genome-wide

polymorphism data at considerably lower costs than sequencing of

individuals [28�]
a similar level to native range populations) compared to

populations from enemy-free areas in Japan. More

recently, Sun and Roderick [12�] using the same system

observed reduced competitive ability in introduced Chi-

nese A. artemisiifolia populations with — as compared to

without — a history of biocontrol by O. communa, suggest-

ing a trade-off between competitive ability and herbivore

resistance in invasive populations. Together, these find-

ings underpin results from previous studies that defenses

of alien populations can be regained rapidly once the

native specialist also arrives in the introduced range,

which may reduce the long-term efficacy of the BCA.
www.sciencedirect.com 
The insect biocontrol agent (BCA)

Although numerous studies report changes in the genetic

variation and structure of introduced versus native popu-

lations of BCAs, the importance of post-release adapta-

tion in the BCA is poorly understood [13�]. However, a

review of experiments and theory by Szücs et al. [14��]
suggests that the changes in a BCA following its intro-

duction are larger than previously considered. Griffith

et al. [15] demonstrated that the weed BCA, Eccritotarsus
catarinensis (Carvalho) (Hemiptera: Miridae), underwent

post-release adaptation to environments with tempera-

tures beyond those in its native range. Bean et al. [16]

showed evolution of the seasonal timing of diapause

induction in the leaf beetle BCA, Diorhabda carinulata
(Desbrochers), introduced into North America from

China to control exotic Tamarix spp. Adaptation over

seven years after its introduction allowed it to establish

well beyond the geographic limits of the originally intro-

duced genotype resulting in a closer match between the

beetle life history and host phenology, and thus to

enhance efficacy and widen its ecoclimatic range.

There are only a few reported extensions of host plant use

in BCAs, and all such hosts are found within the funda-

mental host range [3�,13�]. For instance, Fukano et al. [17]

reported that Ambrosia trifida L. is not utilized by the

oligophagous O. communa in its native North American

range, but is extensively utilized in the beetle’s intro-

duced range in Japan. Furthermore, introduced O. com-
muna beetles showed significantly higher performance on,

and preference for, both introduced and native A. trifida
plants, when compared with native O. communa, suggest-

ing an evolutionary change in the beetle leading to this

expansion of host use.

Taken together, there is evidence of adaptation through

post-introduction evolution in new ranges that could both

increase (e.g., by changes in the critical day length for

diapause induction and phenology in the insect [16,18]; or

in juvenile developmental time [4]) or decrease (e.g., by

increased plant defense when exposed to the BCA

[10�,11,12�]); the initial efficacy of weed BCAs. However,

there is to date sparse evidence of contemporary adaptive

evolution in response to hosts [19], and all restricted to the

limits of the fundamental host range, with no reported

(evolutionary) shifts in host use patterns (sensu Schaffner

[20]; cf. review by Hinz et al. [3�]).

Assessing evolutionary potential pre-release:
targeted selection experiments
There is a general appreciation of the importance of both

pre-release and post-release studies of efficacy and safety

in biocontrol [14��,20,21], but little recognition, anticipa-

tion, or demonstration in pre-release studies of how

biocontrol candidates might evolve upon release in a

new environment [22��]. Pre-release studies are necessary

to provide key insights into evolutionary processes that
Current Opinion in Insect Science 2020, 38:84–91
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Table 1

Approaches to test evolutionary hypotheses in classical biological control (adapted in part from Hoffmann and Sgrò [47]) (BCA: biological

control agent)

Approach Outcome Limitations Examples

Pre-release

Estimates of standing quantitative

genetic variation through full- or

half-sib studies of BCAs and also

potentially target and/or non-

target plants. Genotype x

genotype or genotype x

environment interactions can be

studied at the level of genotypes

between the invader plant and the

BCA, or at the level of populations,

indicating which insect family,

strain, or population is most

effective against which plant

family, strain or population.

Provides estimates of

evolutionary potential and

genetic parameters

Available for systems where controlled studies are

possible

[4]

Manipulations of genetic variation

through selection of BCA or target

or non-target plants

Allows assessment of

genetic constraints, genetic

variability, and/or

importance of hybrid

populations; can be used to

examine importance of

candidate genes

Requires multiple generations; artificial selection in

laboratory environment may not reflect processes in

the field.

[37,48,49], studies

currently underway

(see below)

Common garden experiments in

which individuals from the same

populations or sources are reared

across different environmental

settings. An extension is

reciprocal transplants, in which

individuals from two or more

environments are introduced into

each of the other environments.

Allows assessment of

adaptation to varying

environmental conditions

May not reflect other environmental differences that

exist between the types of habitats in nature

[12�,23,38,40,41,50,51]

Evolution in simulated

environments, such as novel

climatic conditions

Allows assessment of

adaptation to novel

environments, which may be

otherwise difficult to assess

in natural populations

Conditions may not reflect future conditions in nature Studies currently

underway (see below)

Post-release

Comparisons between introduced

populations and those from

presumed origins

Assess actual evolutionary

change post-release

Origins are inferred from historical records; source

populations may also have evolved since release

[52]

BACIP design (glossary), involving

Before/After and Control/Impact

paired comparisons

Direct evaluation of impact

when manipulations are not

possible

Does not control genetic origins or relatedness of

BCA or plant targets

[53]

Natural experiments (glossary) that

compare habitats/locations with

and without impact

Flexible design to measure

impact

Many factors are not controlled including genetic

relatedness and multiple environmental

characteristics

[12�,54]
post-release studies cannot address, as well as to make

predictions that are critical for efficacy and safety

(Table 1). Furthermore, it is possible and profitable to

manipulate population characteristics experimentally in

the field as part of a release program, such as how released

population size influences the likelihood of establishment

and subsequent population growth [23]. By contrast, post-

release studies allow measurements of actual responses in

the field by both BCA and targets, though they suffer in

the ability to manipulate individual factors. In addition,

emerging molecular genetic approaches offer new possi-

bilities for direct control of pests, though not without
Current Opinion in Insect Science 2020, 38:84–91 
environmental and ethical concerns [24], and are consid-

ered elsewhere in this volume.

Experimental evolution

In contrast to studies of adaptive processes in natural

populations, controlled selection experiments provide the

opportunity to quantify evolutionary changes in real-time

over multiple generations. In these studies, genetically

diverse experimental populations are subjected to pre-

determined selection imposed by the experimenter

(experimental evolution sensu stricto, Kawecki et al.
[25]; Lirakis and Magalhaes [22��], glossary).
www.sciencedirect.com
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Furthermore, this approach allows investigators to

include thousands of BCA individuals, while studies

assessing standing genetic variance in performance or

preference traits are usually conducted with much fewer

genotypes. Such long-term experimental approaches

have attracted recent attention due to the emergence

of -omics tools that can reveal underlying mechanisms,

such as high-throughput sequencing followed by genome

scan analyses to detect candidate genes involved in

adaptive evolutionary processes (i.e., ‘Evolve and

Resequence’ (E&R) strategies, [26,27,28�]; glossary).

For instance, studies using experimental evolution fol-

lowed by behavioral bioassays (e.g., host acceptance,

Messina et al. [29]) and performance tests (e.g., popula-

tion growth rate, offspring viability, Price et al. [30])

showed a rapid evolution of the cowpea seed beetle

Callosobruchus maculatus (F.) to novel host species. Addi-

tional E&R studies [31] highlight that host adaptation can

occur through a strong selection on multiple loci from

standing genetic variation, from which some alleles are

even selected against during reversion to the ancestral

host [32]. These advances offer much promise for weed

biocontrol programs to assess the evolutionary potential

benefits and risks of agents before their importation and

release.

Objectives of experimental evolution studies in weed

biocontrol using insects

Controlled selection experiments can address the poten-

tial of (i) BCAs to select for resistant/tolerant plant

genotypes, or (ii) host shifts, defined here as genetically

based changes in preference or performance, by exposing

plant species that are closely related to the target, ranging

from congeneric species already present in the introduced

range to crops and native endangered species (cf. Figure 1,

Studies 1 and 2). Further, they can help (iii) evaluate the

potential for evolutionary adaptations to novel ecocli-

matic conditions arising due to a changing climate or

range expansion into less suitable habitats and regions

in the introduced range that are highly invaded by the

target species (cf. Figure 1, Study 3). Significant among-

population differences in biocontrol agents in the native

range have been well documented, especially for ecologi-

cal traits linked to climate and host plant use [17,19,33].

In the past, this variation was used to increase genetic

diversity by collecting BCAs from distinct populations

and subsequently combining to promote adaptation post-

release to increase establishment and control [19,34].

Because of the increased risk of non-target effects, mod-

ern guidelines for biological weed control no longer allow

this practice and further insist that single populations are

separately assessed for potential efficacy and safety before

their introduction, with a reference collection made of

individuals from the population released [35,36]. How-

ever, targeted selection on artificial populations resulting

from outcrossing among genetically distinct populations

from the native range could be used for the above
www.sciencedirect.com 
mentioned experiments to assess the potential for the

decrease of the biocontrol efficiency over time, as well as

to inform about potential risks (or benefits in the case of

congeneric plant invaders) of the BCA before the intro-

duction, and to increase the spatial overlap of the suitable

habitats for BCA and target weed.

Ongoing studies as examples

As an example of how studies in experimental evolution

could be designed and integrated in pre-release studies of

biocontrol projects, we briefly describe a coordinated

European research program on the ‘Sustainable manage-

ment of Ambrosia artemisiifolia in Europe’ (COST-SMAR-

TER, Müller-Schärer et al. [37]). The North American

oligophagous chrysomelid beetle O. communa, already

successfully used as a BCA in Asia [38], was first recorded

in Europe in 2013 [37]. This created an urgent need for

national authorities to decide whether the accidental

establishment of O. communa in Europe should be con-

sidered as a fortunate coincidence in the campaign against

the highly invasive A. artemisiifolia or whether it should be

considered as a threat to closely related wild or crop

species [39]. A series of ecological studies evaluating

the effectiveness and safety of this beetle were initiated

along with experimental evolution experiments to assess

the beetle’s potential to select for resistant/tolerant A.
artemisiifolia populations, as well as for evolutionary adap-

tation of O. communa to closely related sunflower (cf.

Figure 1, Studies 1 and 2, respectively).

Two field studies were initiated in Northern Italy in 2016:

(1) Large caged plots were established with genetically

similar A. artemisiifolia plants from a wide range of Euro-

pean populations and O. communa was released in half of

them (beetle as the driver of selection). (2) Replicated

experimental cages containing either sunflower,

Helianthus annuus L. (a closely related crop and potential

alternative host species) or A. artemisiifolia were installed

and O. communa that had been widely collected across the

present distribution in Italy was released in all cages (host

plants as drivers of selection). Population genomic and

phenotyping analyses are presently ongoing for both

studies. Sequential next-generation sequencing (pool-

seq, glossary) and genome scan analyses were applied

to detect selected alleles/genomic regions over time in

both A. artemisiifolia (first study) and O. communa (second

study). Furthermore, traits were measured and a common

garden approach was used to test for trade-offs between

growth and defense in the plants exposed or not to the

beetles (Figure 1, Study 1). These were complemented

by behavioral bioassays to evaluate potential population

differentiation in host choice and larval performance over

time of the beetles from the A. artemisiifolia versus

sunflower cages (Figure 1, Study 2).

To our knowledge, this is the first attempt to assess

rigorously and simultaneously the evolvability of a
Current Opinion in Insect Science 2020, 38:84–91
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Three key examples of the proposed framework to assess the evolutionary potential of a biological control agent (BCA) and its targeted plant

invader pre-release using an experimental evolution approach.
BCA and its target weed. Many additional experimental

evolution studies could be envisaged, such as selection of

the various A. artemisiifolia genotypes and assemblages on

O. communa, and interactions of the above described

selection treatments with different environmental condi-

tions (climate change or adaptions to colder areas pres-

ently heavily invaded by A. artemisiifolia, but not pre-

dicted as suitable habitats for the beetle, cf. Figure 1,
Current Opinion in Insect Science 2020, 38:84–91 
Study 3). Another goal might be to examine phenotype by

environment and genotype by environment interactions

(glossary) by using different origins of O. communa. From

such studies, data on evolutionary changes in the plant

invader, in the BCA, and of their interaction could then be

included in models of geographic distribution, population

dynamics, and rate of expansion, to improve biocontrol

efficiency and safety.
www.sciencedirect.com
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Predicting outcomes of species interactions
in novel environments: the way forward in
weed biocontrol
As environmental impacts caused by climate change,

pollution, and habitat destruction are predicted to

increase in the near future, understanding, and predicting

eco-evolutionary outcomes of species interactions under

novel environmental conditions, such as encountered in

the case of weed biocontrol programs, becomes more

challenging, but also more pressing. Presently, field eva-

luations of such eco-evolutionary outcomes are nearly

non-existent and approaches to assess the potential for

rapid evolution pre-release are not yet part of weed

biocontrol programs.

Biocontrol introductions offer an exciting opportunity to

understand more general eco-evolutionary dynamics of

species interactions in novel environments, given the

ample knowledge increasingly available on source popu-

lations and their genetic make-up, and the number and

size of introductions. Furthermore, intentional releases

allow specific manipulations for introductions and redis-

tributions and thus for testing-specific hypotheses for

improving biocontrol efficacy and potential changes of

host range. Knowledge gained from such post-release

studies will help to design more targeted pre-release

studies, such as described above.

We specifically advocate studies of experimental evolu-

tion be conducted pre-release to advance biocontrol

towards a more predictive, efficient, and sustainable

management strategy under changing climatic conditions.

Genomic tools, such as those described above, are

steadily being improved both technically/analytically

and in terms of cost-effectiveness. Applying genetic

and genomic knowledge to improve biocontrol agents

has recently been referred to as ‘next generation

biocontrol’ [21]. We acknowledge that experimental evo-

lution studies remain labor and cost-intensive and may

delay biocontrol programs. Hence, studies, as outlined

above, should for now be primarily applied in BCA-test

plant systems that are suitable for experimental evolution

experiments (e.g., multivoltine BCAs, simple rearing

protocols for BCA and test plants).

Considering the possibility of rapid evolution of control

organisms upon release into a new environment can lead

to new ways of thinking. For example, the longstanding

ecological question of using single versus multiple enemy

species can be reformulated as an evolutionary question:

Should one release a single, best performing, genotype in

each local environment or should one introduce a collec-

tion of genotypes from a single population with a large

standing genetic variation and let natural selection sort

out which genotype or combination of genotypes works

best? This assumes, with some grounding from the exam-

ples above that suitable heritable traits influencing
www.sciencedirect.com 
abundance, distribution, and impact can be identified

before release.

In addition, such pre-release evolutionary experiments

may ultimately shed light on the yet unanswered, enig-

matic question of why despite the often large genetic

variation available in both the plant invader (e.g., in

defense mechanisms) and the BCA (e.g., in host prefer-

ence and performance), resistance/tolerance against the

BCA or host shifts by the BCA are rarely observed [40,41].
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37. Müller-Schärer H, Sun Y, Chauvel B, Karrer G, Kazinczi G,
Kudsk P, Oude AL, Schaffner U, Skjoth C, Smith M et al.: Cross-
fertilizing weed science and plant invasion science to improve
efficient management: a European challenge. Basic Appl Ecol
2018, 33:1-13.

38. Zhou Z-S, Chen H-S, Zheng X-W, Guo J-Y, Guo W, Li M, Luo M,
Wan F-H: Control of the invasive weed Ambrosia artemisiifolia
www.sciencedirect.com

http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0045
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0045
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0050
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0050
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0050
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0055
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0055
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0055
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0055
http://dx.doi.org/10.1111/1365-2745.13198
http://dx.doi.org/10.1111/1365-2745.13198
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0065
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0065
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0065
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0070
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0070
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0070
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0075
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0075
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0075
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0075
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0080
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0080
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0080
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0080
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0085
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0085
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0085
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0085
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0090
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0090
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0090
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0090
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0095
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0095
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0095
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0095
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0100
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0100
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0100
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0100
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0100
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0105
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0105
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0105
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0110
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0110
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0110
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0115
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0115
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0115
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0120
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0120
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0120
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0125
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0125
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0130
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0130
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0135
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0135
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0135
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0140
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0140
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0140
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0140
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0145
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0145
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0150
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0150
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0150
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0150
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0150
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0155
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0155
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0155
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0160
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0160
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0160
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0165
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0165
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0165
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0170
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0170
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0175
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0175
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0175
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0180
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0180
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0185
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0185
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0185
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0185
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0185
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0190
http://refhub.elsevier.com/S2214-5745(20)30028-6/sbref0190


Assessing evolvability in weed biological control Müller-Schärer et al. 91
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