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Is there rapid evolutionary response in introduced
populations of tansy ragwort, Jacobaea vulgaris,
when exposed to biological control?
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Abstract Differences in the herbivore community between a plant’s native (specialists

and generalists) and introduced range (almost exclusively generalists) may lead to the

evolution of reduced allocation to defences against specialist herbivores in the introduced

range, allowing for increased allocation to competitive ability and to defences against

generalist herbivores. Following this logic, the introduction of biological control agents

should reverse this evolutionary shift and select for plants with life-history traits that are

more similar to those of plants in the native range than those of plants in the introduced

range that have not been exposed to biological control. In a common garden experiment,

we compared performance and resistance traits of tansy ragwort, Jacobaea vulgaris,
among populations from the introduced range (New Zealand and North America) that have

either been exposed to or grown free from the biological control agent Longitarsus
jacobaeae. For comparison, we included populations from the native European range. We

found lower levels of generalist-deterrent pyrrolizidine alkaloids (PAs) and of soluble

phenolics in New Zealand populations with than in populations without exposure to

L. jacobaeae, while the opposite pattern was detected among North American populations.

Contrary to expectation, populations with exposure to L. jacobaeae revealed more feeding

damage by L. jacobaeae than populations without exposure. Introduced populations had

higher levels of PAs and reproductive output than native J. vulgaris populations. Jacobaea
vulgaris was introduced in different parts of the world some 100–130 years ago, while

L. jacobaeae was introduced only some 20–40 years ago. Hence, the larger differences

observed between native and introduced populations, as compared to introduced
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populations with and without biological control history, may result from different time

scales available for selection to act.

Keywords Biological control � Evolution of increased competitive ability (EICA) �
Invasive alien species � Reproductive output � Pyrrolizidine alkaloids � Phenolics

Introduction

Various hypotheses have been put forward to explain the increased invasive potential of

exotic plant species (Elton 1958; Alpert et al. 2000; Colautti et al. 2004; Mitchell et al.

2006). Several of these hypotheses are based on the assumption that plants are exposed to

different sets of natural enemies in the native and the introduced range. This assumption

has been supported by numerous studies showing higher richness and different composi-

tion of natural enemies associated with invasive plant species in their native range as

compared to their introduced range (cf. reviews by Keane and Crawley 2002; Mitchell and

Power 2003; Torchin et al. 2003; Mitchell et al. 2006). The Enemy Release hypothesis

(ERH; Keane and Crawley 2002) proposes that plant species, on introduction into a new

range, experience a reduction in top–down regulation by natural enemies that enables them

to increase in abundance and out-compete the native plants in the introduced range (Maron

and Vilà 2001; Mitchell and Power 2003; Torchin et al. 2003). The Evolution of Increased

Competitive Ability hypothesis (EICA; Blossey and Nötzold 1995), an evolutionary

extension of the ERH, is based on the assumption of a trade-off between growth and

defence (Herms and Mattson 1992; Stamp 2003) and provides an additional mechanism for

plant invasion. Under conditions of reduced herbivory in the introduced range, the EICA

hypothesis states that selection will favour genotypes with higher allocation towards

competitive abilities and growth, and lower allocation towards defence traits, as defence no

longer increases fitness.

When testing the EICA hypothesis, it is necessary to incorporate the fundamental

difference between specialist (feeding on one or a few closely related plant species) and

generalist (feeding on several non-related plant species) herbivores (Müller-Schärer et al.

2004; Joshi and Vrieling 2005). The specialist-generalist dilemma (van der Meijden 1996)

argues that in the native range, intermediate levels of plant toxins are maintained by

opposing selective forces of adapted specialists that use plant defence chemicals as host-

plant recognition cues and feeding or oviposition stimulants, and of non-adapted gener-

alists that are deterred by the same chemicals. The allocation costs of plant toxins such as

alkaloids or glucosinolates appear to vary considerable, but often tend to be moderate

(Strauss et al. 2002). In contrast, digestibility-reducing metabolites such as lignin act as

defences against both generalist and specialist herbivores, and they occur at relatively high

concentrations and incur significant allocation costs (Müller-Schärer et al. 2004). By com-

bining the EICA hypothesis and the specialist-generalist dilemma, one may hypothesize that

plants introduced into areas where specialist herbivores are lacking but generalist herbivores

are present may evolve increased levels of defence traits that act primarily against generalist

herbivores, and decreased levels of defence traits that act also against specialist herbivores. If

the defence chemicals against generalists are less expensive than those against the special-

ists, then an evolutionary shift in defence strategy in invasive populations may result in a net

gain of resources for the plant, which then can be invested into increased growth and

reproduction (Müller-Schärer et al. 2004; Joshi and Vrieling 2005).
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So far, studies comparing life-history traits of populations from the native and the

invaded range have revealed mixed results (for references see Müller-Schärer et al. 2004;

Bossdorf et al. 2005; Maron and Vilà 2008). One reason for this may be that testing the

EICA hypothesis is not a simple task. A thorough test requires knowledge of the origin of

the invasive populations to make sure that differences in means of life-history traits do not

simply reflect the introduction of a subset of genotypes from the native range with some

specific characters. Moreover, differences in growth rate, reproductive output or defence

traits that may be observed in cross-continent comparisons may also have evolved in

response to factors other than those related to herbivory (Colautti et al. 2004, 2009). For

example, Maron et al. (2004, 2007) found latitudinally based clines in leaf traits, growth

and reproductive output in Hypericum perforatum L. in the introduced range in North

America.

An alternative way to improve our understanding of evolutionary changes in introduced

populations in response to different herbivore assemblages is to compare life-history traits

of populations within the introduced range that have experienced successful biological

control with those of populations that have not been exposed to classical biological control

(Maron and Vilà 2008; Müller-Schärer and Schaffner 2008). Following the same lines of

argumentation as the EICA hypothesis, and considering the specialist-generalist dilemma,

populations that have been reunited with specialist herbivores through biological control

measures should evolve genotypes with increased defences against specialist herbivores,

reduced defences against generalist herbivores and decreased growth rate and/or repro-

ductive output. Hence, populations exposed to biological control should become more

similar to native populations than to populations from the introduced range that have not

been exposed to classical biological control.

From the studies published so far (reviewed in Hinz and Schwarzlaender 2004; Bossdorf

et al. 2005), some of the best evidence for both higher susceptibility to herbivory and

higher competitive ability in the introduced range come from species that were introduced

to the new area 200–250 years ago, and that therefore had the opportunity to adapt to the

new conditions over a relatively long time period (Dietz and Edwards 2006). In contrast,

most of the classical biological control programs against invasive plant species are only

20–50 years old (Julien and Griffiths 1998). Despite the relatively short exposure time of

most invasive plant species to biological control organisms, we believe that comparison of

invasive populations with and without a biological control history offers new opportunities

to test the evolutionary trajectories of plant species in the presence and absence of spe-

cialist natural enemies (Joshi and Vrieling 2005; Handley et al. 2008). It is expected that

invasive plants experience especially strong selection from specialist herbivores in suc-

cessful biological control projects (Crawley 1983; McEvoy et al. 1991; Crutwell McFa-

dyen 1998; Maron and Vilà 2008; Zangerl et al. 2008).

Tansy ragwort, Jacobaea vulgaris Gaertn., is a toxic biennial or short-lived perennial

native to Eurasia and introduced to different parts of the world in the late nineteenth and

early twentieth centuries (Coombs et al. 1999) where it became a serious weed problem

affecting livestock production, crop and forage yields. In the 1960s, a biological control

programme was launched against J. vulgaris that resulted in the release of several bio-

logical control agents in North America, New Zealand and Australia. In some regions,

biological control agents brought J. vulgaris under control, while in other regions the weed

continues to spread (Julien and Griffiths 1998; Coombs et al. 2004).

Previous studies revealed that populations of J. vulgaris from the introduced range have

higher levels of pyrrolizidine alkaloids (PAs), a higher growth rate, a higher reproductive

output and a decreased resistance against specialist herbivores, such as Longitarsus
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jacobaeae (Waterhouse; Coleoptera, Chrysomelidae) and Tyria jacobaea L. (Lepidoptera,

Arctiidae), as well as increased resistance against generalist herbivores (Joshi and Vrieling

2005; Stastny et al. 2005). Here we set out to assess whether introduced J. vulgaris
populations that have been re-exposed to the biological control agent L. jacobaeae differ

from those populations from the introduced range that have never been exposed to classical

biological control of L. jacobaeae. In a common garden experiment in the native range we

grew populations of J. vulgaris originating from two different parts of the introduced

range, i.e. North America and New Zealand, and compared relative growth rate (RGR) and

reproductive output. To assess defence traits, we measured leaf dry matter content

(LDMC) and concentration of soluble phenolics (as indicators for resistance against spe-

cialist and generalist herbivores), concentration of PAs (as indicator for resistance against

generalist herbivores) as well as resistance to the specialist L. jacobaeae, which occurs

naturally at the study site. For comparison, we also included J. vulgaris populations from

the native European range. We predicted that populations in the introduced range that have

experienced biological control by L. jacobaeae will (1) grow smaller, (2) show lower

reproductive output, (3) harbour lower levels of resistance against generalist herbivores,

and (4) have higher levels of resistance against specialist herbivores than introduced

populations that have not been exposed to biological control. With regard to these plant

traits, we furthermore predicted that (5) populations from the invaded range that have been

exposed to L. jacobaeae are more similar in terms of growth, reproduction and defence

traits to the native European populations than to introduced populations without biological

control management by L. jacobaeae.

Materials and methods

Jacobaea vulgaris and its biological control history

Jacobaea vulgaris has been previously named Senecio jacobaea, but new taxonomical

insights place it in a separate genus Jacobaea (Pelser et al. 2002, 2006). This plant and its

associated herbivores are among the most extensively studied systems in plant-insect

interactions (e.g. Dempster and Lakhani 1979; van der Meijden and van der Waals-Kooi

1979; Myers 1980; McEvoy et al. 1991). In its native range, which extends from western

Europe to Central Asia, J. vulgaris is attacked by more than 70 herbivores, several of

which have a very narrow host-range (Harper and Wood 1957). In North America, some 40

native, predominately generalist arthropods have been recorded feeding on J. vulgaris,

with unknown impact on the plant’s population dynamics (Frick 1972). Jacobaea vulgaris
has also been intensively studied in terms of its chemical defence systems, especially the

production of PAs (Hartmann and Witte 1995), which are secondary compounds deterrent

to non-adapted (generalist) herbivores (van Dam et al. 1995; de Boer 1999) but attractive

to the specialist herbivore Tyria jacobaea (Macel and Vrieling 2003). Previous studies

provide evidence that variation in concentration and composition of PAs are genetically

based (Vrieling et al. 1993).

Besides PAs, J. vulgaris also contains a number of soluble phenolics such as chloro-

genic acid and flavonoids (Kirk et al. 2005) Generally, soluble phenolics are assumed to act

as defences against both generalist and specialist herbivores (Schoonhoven et al. 1998;

Stamp and Osier 1998; Müller-Schärer et al. 2004), and this has also been shown for

chlorogenic acid (Bernays et al. 2000; Leiss et al. 2009). We therefore consider the soluble

phenolics in J. vulgaris to act as potential defences against generalist and specialist
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herbivores. Moreover, leaf dry matter content (leaf dry weight divided by leaf fresh

weight) was used as a proxy for quantitative chemical defences that reduce digestibility for

both specialist and generalist herbivores (Elger and Willby 2003), because this trait is

closely related to total phenolics (which includes lignin and tannins; Hanley and Lamont

2002).

Jacobaea vulgaris was first recorded in New Zealand in 1874 (Thomson 1922), in

Canada in 1913 (Harris et al. 1971) and in the USA in 1922 (Isaacson 1973). Six biological

control agents have been introduced against J. vulgaris in North America, Australia or

New Zealand (Julien and Griffiths 1998). Studies by McEvoy et al. (1991) and McEvoy

(1999) provide evidence that the successful control of tansy ragwort in western US is

largely due to the introduction of the flea beetle Longitarsus jacobaeae. Adult beetles feed

on the foliage throughout the summer and fall, leaving characteristic feeding punctures

(hereafter called ‘‘shot-holes’’), and the larvae feed inside the roots. This beetle sequesters

PAs (Dobler et al. 2000) and may therefore benefit from feeding on PA-rich plants, but it is

unknown whether it uses PAs in locating its host-plant. Longitarsus jacobaeae was

introduced from Italy to northern California in 1969 (Frick 1970) and to Oregon in 1971

(Isaacson 1978). A consignment of L. jacobaeae beetles was subsequently sent from

Oregon to New Zealand where first field releases were made in 1983 (Syrett et al. 1984).

Jacobaea vulgaris was brought under successful biological control in northern California

by 1976 (Pemberton and Turner 1990) and in western Oregon in the early 1980s (McEvoy

et al. 1991; Coombs et al. 2004). Between 1983 and 1999, 158 populations of L. jacobaeae
beetles were released in different regions of New Zealand. Successful and ongoing control

of J. vulgaris has been reported from a number of sites where L. jacobaeae got established.

However, the weed continues to thrive in areas where the beetle was not released or failed

to establish (Hayes 2000). Besides L. jacobaeae, the cinnabar moth, Tyria jacobaeae,

which attacks the above-ground plant parts, is considered to have at least regionally

contributed to the biological control of J. vulgaris populations as well (Julien and Griffiths

1998).

Sampled plant material

Seeds of 32 populations from the native and the introduced range of J. vulgaris were

collected between 2002 and 2004 and stored at 5�C. From each population, between 10 and

20 seed families (maternal plants) were sampled and bagged separately. Local experts

provided information on whether L. jacobaeae had successfully established and become

abundant at least during a certain period in time, or whether it had not been released or

failed to establish at the sampling site. In the first case, the J. vulgaris population was

classified as having had exposure to L. jacobaeae, while in the two latter cases the pop-

ulation was classified as having had no exposure to L. jacobaeae. Care was taken to omit

populations from which only low densities of L. jacobaeae had been reported, because

populations that had never been exposed to high densities of the biological control agents

are unlikely to have experienced significant selection by this species. All populations from

the native range harboured populations of L. jacobaeae or the sibling species Longitarsus
flavicornis L. No phylogenetic study on the origin of invasive J. vulgaris has been pub-

lished so far. It is therefore unknown whether the selected populations from the native

range (Switzerland and The Netherlands) are representative of all native populations, and

whether they are from the range from which ragwort introductions to North America and

New Zealand originated. However, as outlined above, the primary focus of this study was

on comparing populations from the introduced range that have experienced successful
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biological control with populations that have not been exposed to biological control. A

complete list of the populations included in the experiment is provided in Table 2 in

Appendix.

In June 2005, seeds of the 32 populations were weighed and sown individually into

3 9 3 cm pots filled with peat soil. Since this took a relatively long time, seeds for the field

block 1 were sown first, followed by the seeds for field block 2 and 3. Pots were put in the

fridge at 7�C until all seeds were sown for an entire block in order to synchronize seedling

development. Pots for block 1 were transferred to the greenhouse on 4 June, of block 2 on 7

June and of block 3 on 12 June. The average daily temperature in the greenhouse was 24�C

with a maximum of 38�C on sunny days and 19�C during night. Incident light was sup-

plemented by high-pressure sodium lamps (type SGR, Son-T-400 W [Philips, Zürich,

Switzerland]). The pots were regularly watered. Due to poor germination rate, additional

seeds from 24 populations were mass-germinated in Petri dishes on moist filter paper, this

time without weighing the seeds before germination. The Petri dishes were placed beside

the trays in the greenhouse. When the cotyledons appeared, the seedlings were transplanted

into 3 9 3 cm pots filled with peat soil. Fifty-two of the 480 seedlings used in the field

experiment (see below) originated from the mass-germination in Petri dishes. When the

seedlings had reached the 2- to 4-leaf stage, they were transferred individually to larger

pots (9 cm Ø) filled with a mix of peat soil and sand (ratio 1:1).

Field experiment

As we used populations from the introduced (New Zealand, North America) and native

(Switzerland and The Netherlands) range, and in order to minimize the risk of their

unwanted spread, the experimental garden was set up only in the native range. Moreover,

the plants were harvested during the flowering stage in order to prevent seed set.

In July 2005, a meadow adjacent to CABI Europe-Switzerland Centre in Delémont,

Switzerland, was mown to obtain a uniform vegetation height. The J. vulgaris plants were

arranged in a randomized block design, with one plant of each of five families of the 32

populations planted in each of three blocks (resulting in a total of 480 plants). Plants

assigned to the same block were transplanted within 48 h, but the different blocks were set

up at different dates to allow all plants (also those originating from mass germination) to

reach at least the six-leaf stage. Within each block, populations were arranged in a regular

design by planting one plant of a randomly chosen population from the introduced range

without L. jacobaeae biological control history, followed by one plant of a randomly

chosen population from the introduced range with L. jacobaeae biological control history

and one plant of a randomly chosen population from the native range. Plants were spaced

1 m apart, with 5 m distance between the blocks. In addition, a row of plants from a

random mix of families was added along the periphery of each block to minimize edge

effects. Dead plants were replaced within the first week after transplanting. Molluscicide

granules (Blaukorn�, Pluess-Stauffer AG, Oftringen, Switzerland) were brought out

around all plants to reduce mortality due to mollusc attack. The vegetation around the

plants was left undisturbed. Since the summer of 2005 was very hot and dry, all plants were

watered during the first week after transplanting.

One week after transplanting the plants into the field blocks, we measured the length of

the longest leaf as well as the total number of green leaves.

Plants were first measured at the age of 8–10 weeks, and then re-measured at a monthly

interval until the end of the growing season (Table 3 in Appendix). The length of the

longest leaf and number of leaves was multiplied to obtain an estimate of rosette size that
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has been shown to be significantly correlated with above-ground biomass in J. vulgaris
(Wesselingh 1995). RGR was calculated either as the daily increase in biomass between

size measurement 3 and size measurement 5 (same calendar dates for all blocks), or during

a comparable period of time after transplanting the plants into the field, i.e. in block 1 from

size measurement 1 to size measurement 3, in block 2 from size measurement 2 to size

measurement 4, and in block 3 from size measurement 3 to size measurement 5 (Table 3 in

Appendix). In both cases, RGR was calculated as RGR = (log (rosette size at the end of

the period)—log (rosette size at the beginning of the period))/number of days. As the two

measurements of RGR yielded similar outcomes, only the results of RGR based on time

after transplanting are presented.

Both J. vulgaris and L. jacobaeae occur naturally at the field site. As the local popu-

lation of L. jacobaeae did not provide sufficient individuals for the experiment, some 300

additional adults were collected on 13 September in a grassland some 50 km away from

the experimental site at St-Imier, Canton Bern, and 100 adults each (sex ratio 1:1) released

in the three blocks of the field experiment. Together with the naturally occurring popu-

lation this resulted in an overall density of *1 adult L. jacobaeae per plant. Two other

Longitarsus species feeding on J. vulgaris occur naturally in the area of the study site,

but their densities during the experiment were much lower than those of L. jacobaeae
(*1 adult per 10 plants) Feeding damage by adult L. jacobaeae was estimated by counting

the total number of shot-holes on all green leaves at the end of the season after the first

severe frost, i.e. when most adult L. jacobaeae had died (Table 3 in Appendix). Previous

investigations with two native and two introduced populations indicated that number of

shot-holes is significantly related to total area eaten and does not differ among populations

(ANCOVA with population: F3,32 = 0.67, P [ 0.5; number of shot-holes: F1,32 = 32.0,

P \ 0.001; population x number of shot-holes interaction: F3,32 = 1.09, P [ 0.3), and that

the total number of shot holes counted at the end of the season reflects the cumulative

damage plants experience during the rosette stage reasonably well (Stastny et al. 2005).

In spring 2006, the plants from block 1 were harvested to assess the number of larvae

mining inside the roots. The number of larvae was positively correlated with the number of

shot-holes recorded in the previous autumn (Spearman’s rank correlation r = 0.221,

P = 0.014, N = 123). Because the data for number of larvae could not be normalized

and were restricted to just one plot, we decided to only calculate ANOVAs using adult

feeding damage as response variable. In summer 2006, the plants from block 2 and 3 were

harvested at a standardized phenological stage, i.e. when the first flowers started losing

their petals. The number of flowers (flowers with yellow or brown petals plus flower heads

that had already lost their petals) were counted, the plants dried at 60�C during 72 h, and

below- and above-ground biomass determined. Since the analyses of below-, above-ground

and total biomass revealed comparable results, only the analysis of total biomass will be

presented.

Leaf physiology and chemistry

For the analysis of LDMC, PAs and soluble phenolics, the 5th fully developed leaf from

top was collected on 3–5 October 2005 from all plants of block 1. In twenty cases, an

individual plant was missing and a replicate of the same family was sampled from block 2

or 3. Leaf samples were weighed immediately after clipping, then dried for 3 days at 40�C,

reweighed and stored at -20�C until further analysis. LDMC was used as a proxy for leaf

palatability, since it is closely related to the total amount of phenolics (which includes

lignin and tannins; Elger and Willby 2003).
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PAs were extracted by acid–base extraction (Hartmann and Zimmer 1986). PA

composition of the plants was determined with GC-FID (Vrieling and de Boer 1999).

Heliotrine was used as an internal standard to calculate individual PA concentrations,

which were then combined to calculate total PA concentration. The concentrations of the

individual PAs were then pooled to determine total PA concentration, since L. jacobaeae,

similarly to Tyria jacobaea (Macel et al. 2002), does not appear to distinguish among

individual PAs (Schaffner, unpublished results).

Analysis of soluble phenolics was carried out with those 120 plants from which enough

plant material was left over after the analysis of PAs. For the extraction of soluble

phenolics, 25 mg of dry leaf material was added to 5 ml 50% MeOH and slowly shaken for

66 h. After centrifugation (10 min at 2,000 rpm), 0.5 ml was transferred to a test tube and

filled up with distilled water to 2.8 ml. Then 0.2 ml Folin–Ciocalteu’s reagents (Merck)

were added and mixed well. After 3 min, 1 ml 0.5 M NA2CO3 was added and again mixed

well and after 8 min the absorption was measured at 725 nm. A calibration curve was

made with a standard solution of chlorogenic acid (0.3 mg per ml in 50% MeOH).

Phenolic concentration of the samples was calculated in ‘‘mg of chlorogenic acid equiv-

alent’’ by correcting for the real amount of dry material used (Singleton et al. 1999).

Statistical analyses

To partition the variance of RGR, number of flowers, number of shot-holes and biomass at

harvest between native and introduced populations, we included the following terms in

hierarchical analyses of variance: block (random factor), origin (native versus introduced

range; fixed factor), and population and family nested within population as random factors

in the model. To assess differences among introduced populations, hierarchical analyses of

variance were carried out including block (random factor), region within the introduced

range (i.e. North America and New Zealand; fixed factor), biological control history (with

or without L. jacobaeae biological control history; fixed factor), region x biological control

history interaction, and population and family nested within population as random factors.

For the analyses of number of shot-holes, rosette size in autumn (size measurement 5) was

included in the models as a covariate. Since LDMC and concentrations of PAs and soluble

phenolics were only assessed from one replicate per family, analyses of variance were

calculated as described above, but without block and family as random factors. To meet the

assumptions of analysis of variance, data on rosette size, number of flowers and concen-

trations of PAs and soluble phenolics were natural log transformed prior to analysis.

Because RGR was calculated differently among the three blocks (either at different

calendar dates or at different periods after transplanting; see above), we also calculated

ANOVA models that included the interactions between block and the fixed factors.

However, all interactions between block and fixed factors turned out to be non-significant

and were therefore excluded from the final model.

Mortality during the first growing season and during winter (using data from blocks

1–3) as well as probability of flowering in the second season (using data from blocks 2 and

3; Table 3 in Appendix) were assessed using analysis of deviance based on the models

described above.

Correlations among RGR, PAs, soluble phenolics, LDMC and relative number of

shot-holes (shot-holes divided by rosette size in autumn) were assessed using Pearson

correlation analysis, with P values adjusted for multiple comparisons using sequential

Bonferroni test. To assess the relationship between latitude of population origin and

RGR, number of flowers or concentrations of PAs and soluble phenolics, we conducted
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regression analyses using the population means for these parameters; the regressions were

calculated for the whole set of introduced populations as well as separately for the pop-

ulations from New Zealand and for those from North America. All statistical analyses were

conducted using the SPSS statistical package, version 16.0.

Results

Differences between native and introduced populations

Populations in the introduced range had 1.5-fold higher concentrations of PAs (introduced

populations: 2.37 ± 0.16 mg/g dry weight; native populations: 1.52 ± 0.35 mg/g dry

weight; F1,30 = 6.636, P = 0.015) and produced twice as many flowers than populations

from the native range (introduced populations: 493.61 ± 39.97; native populations: 225.43

± 39.76; F1,30 = 9.158, P = 0.005). RGR, concentration of soluble phenolics, LDMC,

number of shot-holes and biomass at harvest did not differ between native and introduced

populations (P [ 0.1).

A total of 51 out of the 480 plants died during the first season, and another 103 plants

during the winter. Mortality did not differ between native and introduced populations

neither during the first growing season nor during the winter (P [ 0.2). Of the 203 sur-

viving plants in blocks 2 and 3, 179 flowered in summer 2006, while 24 remained in the

rosette stage. Flowering probability did not differ between native and introduced popu-

lations (P [ 0.5).

Differences among introduced populations

The analyses of the concentrations of PAs and of soluble phenolics both revealed a sig-

nificant region by biological control history interaction among introduced populations

(Table 1). In New Zealand, populations with exposure to biological control had lower

levels of generalist-deterrent pyrrolizidine alkaloids (PAs) and soluble phenolics in New

Zealand than populations without exposure to biological control, while the opposite pattern

was found among North America populations (Fig. 1). The relative number of shot-holes

also differed significantly between populations with different L. jacobaeae biological

control history. However, contrary to our predictions, introduced populations which were

exposed to L. jacobaeae biological control were more attacked than populations which had

never experienced biological control by L. jacobaeae (Table 1; Fig. 2). No differences

were found between the two introduced regions and between populations with and without

biological control history for RGR, LDMC, biomass at harvest and number of flowers

(Table 1).

Latitude of population origins had no effect on population means for RGR, number of

flowers and concentrations of PAs and soluble phenolics when populations from New

Zealand were analysed alone or in combination with the North America populations. In

contrast, latitude exhibited a significant negative effect on concentrations of PAs (Fig. 3;

ln(y) = -0.041x ? 2.95, r2 = 0.36, P = 0.017) and of soluble phenolics of North

American populations (ln(y) = -0.021x ? 3.46, r2 = 0.29, P = 0.037).

Mortality during the first growing season did not differ between North American and

New Zealand populations, nor between populations with and without biological control

history (P [ 0.1). Winter mortality was higher in populations from North America than in

populations from New Zealand (F1,27 = 6.17, P \ 0.05), but did not differ among
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populations with and without biological control history (P [ 0.8). Flowering probability

differed neither between North American and New Zealand populations nor between

populations with and without biological control history (P [ 0.2).

Correlations among plant traits

The concentration of soluble phenolics was positively correlated with the concentration of

PAs (r = 0.182; P = 0.030; N = 124) and with LDMC (r = 0.229; P = 0.013;

N = 117), but not with RGR or relative number of shot-holes (both P [ 0.1). No
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Fig. 1 Concentrations of
a pyrrolizidine alkaloids and
b soluble phenolics (mean ? SE)
in introduced populations from
North America and New Zealand.
?LJ, populations with exposure
to the biological control agent
L. jacobaeae; -LJ, populations
without exposure to L. jacobaeae
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introduced populations from
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to the biological control agent
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without exposure to L. jacobaeae
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significant correlation was found among RGR, concentrations of PAs, LDMC and relative

number of shot-holes (all P [ 0.1). However, plants with higher PA concentrations tended

to receive more feeding damage in absolute terms (r = 0.145; P = 0.088; N = 140).

Discussion

In the native range, enemy pressure and selection on resistance traits have been found to

vary greatly, even among closely located populations (Maron and Vilà 2008 and references

therein). Moreover, exotic plant species are introduced into a heterogeneous environment

harbouring diverse recipient communities, and different genotypes may arrive in different

regions or habitats, which may ultimately influence the direction and speed of evolutionary

change in introduced populations. Thus, it can hardly be expected that all populations

universally evolve from well defended to poorly defended where they are introduced.

We studied variation in life-history traits among introduced populations of J. vulgaris
from two different parts of the introduced range and compared populations with and
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without exposure to L. jacobaeae, the biological control agent that is considered to be at

least partly responsible for the regional decrease of this invasive weed. So far, this

approach has rarely been used to explore evolutionary change in introduced species (but

see Zangerl and Berenbaum 2005; Maron and Vilà 2008; Handley et al. 2008; Müller-

Schärer and Schaffner 2008), although it can reduce problems encountered when

comparing populations from the native and the introduced range (Colautti et al. 2004).

Based on our results, one might assume that (re-)exposure of J. vulgaris to L. jacobaeae
has led to opposite evolutionary trajectories in resistance traits in New Zealand and North

America. In New Zealand, concentrations of PAs and soluble phenolics were lower in

populations that have been exposed to L. jacobaeae. A reduced concentration of PAs is

consistent with our hypothesis that (re-)exposure to specialist natural enemies should

reduce qualitative defence traits if they can be used by specialists for locating host-plants

or increasing their own survival (Müller-Schärer et al. 2004). Longitarsus jacobaeae
sequesters PAs (Dobler et al. 2000) and may therefore benefit from feeding on PA-rich

plants. Field studies indicate that plants with higher PA concentration tend to receive more

L. jacobaeae damage in absolute terms (Stastny et al. 2005; this study). However,

L. jacobaeae also responds positively to plant size (Windig 1993). When L. jacobaeae
feeding damage is corrected for plant size, the relationship between feeding damage and

PA concentration becomes non-significant (this study) or even negative (Vrieling and van

Wijk 1994; Stastny et al. 2005). Therefore, the direct role of PAs in host-selection by

L. jacobaeae remains to be shown.

While alkaloids have been put forward as defence chemicals acting primarily against

generalist natural enemies, soluble phenolics have been shown to affect preference and

performance of generalist as well as specialist herbivores (Schoonhoven et al. 1998). It is

unknown to what extent chlorogenic acid or any other soluble phenolic present in

J. vulgaris affects preference or performance of L. jacobaeae. Yet, the positive correlation

between concentrations of soluble phenolics and PAs found in this study suggests that,

even in the absence of a direct effect of soluble phenolics on preference or performance of

L. jacobaeae, selection by the biological control agent on PA concentration may also affect

concentration of soluble phenolics.

In North American populations, the pattern in resistance traits appeared to be opposite

of what was found in New Zealand populations. It should be noted, however, that the

sampling of the populations in North America was constrained by the fact that successful

biological control by L. jacobaeae has been largely restricted to southwestern and western

parts of the USA (Julien and Griffiths 1998), while populations without biological control

history are located in the northern part of the USA and in Canada (Table 2 in Appendix).

Because concentrations of PAs and soluble phenolics in North American populations were

found to be significantly related with latitude of population origin, our experimental design

did not allow testing of whether the pattern found in North America is indeed due to

different biological control history, or whether it is due to confounding geographical

variation. Clinal variation in life-history traits has been reported for a range of invasive

species (Weber and Schmid 1998; Kollmann and Banuelos 2004; Maron et al. 2004). A

disjunct distribution of populations that have been exposed to biological control and

populations that have remained free from specialist herbivory is known for various other

weed systems, including Hypericum perforatum L. (Vilà et al. 2003). In New Zealand,

however, the J. vulgaris populations with and without biological control history were

collected within approximately the same latitudinal range (Table 2 in Appendix).

Based on the specialist-generalist dilemma, we predicted that populations in the

introduced range that were re-exposed to L. jacobaeae would evolve increased levels of
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resistance against this biological control agent. However, LDMC was not increased,

despite the fact that this trait is considered to incur some level of protection against

specialist herbivores (Elger and Willby 2003). Moreover, populations with biological

control history had more feeding damage by L. jacobaeae, when corrected for rosette size,

than populations without biological control history, suggesting that J. vulgaris populations

that were re-exposed to L. jacobaeae have evolved reduced resistance to this herbivore

species. An alternative explanation of this counterintuitive result is that L. jacobaeae was

released but failed to establish in some of the J. vulgaris populations that were considered

to be free of biological control history. If so, then these J. vulgaris populations might have

already had higher levels of resistance at the time of re-exposure to L. jacobaeae than those

populations in which L. jacobaeae succeeded in building up outbreak population densities.

Also, it is unknown to what extent other biocontrol agents released in New Zealand and

North America or generalist arthropods that have been recorded feeding on J. vulgaris in

the introduced range (Frick 1972) impose some level of selection on traits of invasive

J. vulgaris populations.

We found considerably higher PA concentrations and higher reproductive output in

J. vulgaris populations from the introduced range than in populations from the native

range, which is in line with the results of previous studies (Joshi and Vrieling 2005; Stastny

et al. 2005). Three of the six populations from the native range were of the erucifoline

chemotype, while the other three populations from the native range and all populations

from the introduced range were of the jacobine chemotype (C. Rapo, unpublished results).

The three populations of the erucifoline chemotype had lower PA concentrations than the

three populations of the jacobine chemotype from the native range; however, when

comparing the three native populations of the jacobine chemotype with those of the

introduced range, no significant difference in PA concentration was found. These findings

are in line with the results of the study by Joshi and Vrieling (2005) who found generally

higher PA concentrations in the jacobine chemotype than in the erucifoline chemotype, but

similar PA concentrations in native and in introduced populations of the jacobine chem-

otype. Joshi and Vrieling (2005) suggested that the erucifoline chemotype has either not

been introduced to most of the invasive areas or has been selected against in the new

environments. Assessing the genetic relationship between native and introduced popula-

tions of J. vulgaris may clarify whether J. vulgaris has indeed undergone rapid evolution

after its introduction into New Zealand and North America.

Opposite to previous studies (Joshi and Vrieling 2005; Stastny et al. 2005), RGR, rosette

size in autumn 2005 and biomass at harvest did not differ between native and introduced

populations. One explanation for the lack of differences in size may be that in our study the

rosettes were transplanted into dense vegetation and were therefore exposed to high inter-

specific competition, while Joshi and Vrieling (2005) grew the plants in absence of

competition and Stastny et al. (2005) in a disturbed field with low competition. Differences

in growth rate between plants from invasive populations and from native populations can

be context-dependent; Leger and Rice (2003) found that plants from invasive populations

of Eschscholzia californica Cham grew larger than those from native populations when

grown in a competition-free environment, but no differences were found when plants were

grown with competition from other plant species. Alternatively, the non-significant dif-

ference in plant size between populations from the native and the introduced range in our

experiment, which was carried out in a field where J. vulgaris occurs naturally, may also be

due to negative feedbacks of the native soil which may have accumulated Jacobaea
pathogens (Bezemer et al. 2006).
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Concluding remarks

We confirmed clear differences in PA concentration and reproductive output between

native and introduced populations of J. vulgaris, which is in line with expectations based

on the refined EICA hypothesis (Müller-Schärer et al. 2004; Joshi and Vrieling 2005).

However, our study provides little evidence for a rapid evolutionary adaptation of

J. vulgaris populations in the introduced range to the biological control agent L. jacobaeae,

despite the significant impact of this specialist herbivore on the population dynamics of the

target weed in the introduced range (McEvoy et al. 1991). The small differences between

introduced populations with and without exposure to L. jacobaeae and the larger differ-

ences between native and introduced populations may result from different time scales

available for selection to act, with J. vulgaris introduced in different parts of the world

some 100–130 years (*50 generations) and L. jacobaeae only some 20–40 years ago

(10–15 generations). Theoretically, rapid evolution in invasive J. vulgaris populations

re-exposed to L. jacobaeae seems possible even after a relatively short period of time,

since exotic species exposed to new environments have been repeatedly shown to undergo

rapid evolution (Stockwell et al. 2003; Zangerl and Berenbaum 2005), and since outbreak

densities of L. jacobaeae are likely to have exerted or still exert strong directional selection

pressure on exotic J. vulgaris populations. However, a rapid evolutionary response by

J. vulgaris in the presence of L. jacobaeae may be constrained by pleiotropic effects

(Mitchell-Olds 1996), since the concentrations of PAs and soluble phenolics are correlated

with other plant traits, such as leaf morphology (Rapo, unpublished results) and shoot:root

ratio during the seedling stage (Schaffner et al. 2003). We propose that a detailed

knowledge of the variation among introduced populations in terms of their biological

control history constitutes an excellent but yet underappreciated framework to study the

evolutionary ecology of invasive plants.
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Appendix

See Tables 2 and 3.

Table 2 Origin of the populations of Jacobaea vulgaris included in the common garden experiment, and
presence/absence of the biological control agent Longitarsus jacobaeae (in Chereng probably the sibling
species L. flavicornis)

Pop. Country Site of seed collection Longitude Latitude L. jacobaeae

Invasive populations without exposure to L. jacobaeae

1 NZ Maruia E172,13 S42,11 -

2 NZ Craigieburn E171,40 S42,50 -

3 NZ Cook River Flat E170,00 S43,30 -

5 NZ Halfmoon Bay E168,08 S46,54 -

6 NZ Southland 2 E169,00 S46,00 -
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Table 2 continued

Pop. Country Site of seed collection Longitude Latitude L. jacobaeae

7 Canada Vancouver Island (BC) W125,3 N48,9a -

8 Canada Laidlaw (BC) W121,26 N49,23 -

9 Canada Peters Road (BC) W121,0 N49,0a -

10 Canada Chute Lake (BC) W119,35 N49,30 -

11 Canada Forestry Road (BC) W119,0 N49,2a -

12 Canada Big Meadow (BC) W119,0 N49,1a -

13 USA C-spur (Montana) W114,53 N48,18 -

14 USA Island Lake (Montana) W109,26 N45,31 -

15 USA Site 2 (Montana) W114,47 N48,20 -

25 USA No Bear W114,53 N48,14 Released when seeds
were collected

26 USA Surprise Hill (Montana) W114,56 N48,15 Released when seeds
were collected

27 USA Little Wolf 03 W114,53 N48,17 Released when seeds
were collected

Invasive populations with exposure to L. jacobaeae

16 NZ Mangatoki E174,04 S39,18 ?

17 NZ Opunake E173,51 S39,27 ?

18 NZ Tauranga Bay E176,10 S37,42 ?

20 NZ Landsborough E169.09 S44,42 ?

23 NZ Whapitu E174,30 S37,00 ?

24 NZ Southland 1 E169,00 S45,45 ? (? Tyria jacobaea)

28 USA Mendocino (California) W123,47 N39,18 ?

29 USA Del Norte (California) W123,0 N39,5a ?

30 USA Humboldt (California) W118,31 N40,02 ?

Native populations with L. jacobaeae

31 CH Mettembert (Jura) E07,20 N47,22 ?

32 CH St-Imier (Bern) E07,00 N47,09 ?

33 CH L’Himelette (Bern) E07,03 N47,08 ?

34 NL Meijendel E04,20 N52,09 ?

35 NL Leiden E04,30 N52,09 ? (? Tyria jacobaea)

36 F Chereng E03,21 N50,61 ? (L. flavicornis?!)

NZ New Zealand, USA United States of America, CH Switzerland, NL Netherlands, F France
a Approximate values for coordinates

Table 3 Timetable of the experimental tasks carried out in each of the three experimental blocks

Task Block 1 Block 2 Block 3

Sowing date 5/6/05 7/6/05 12/6/05

Transplanting to garden 27–28/7/05 9–10/8/05 22–23/8/05

Number of transplanted seedlings 160 160 160

Size measurement 1 1–3/8/05 – –

Size measurement 2 – 17/8/05 –
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