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Abstract

The increased translocation of plant species for biodiver-
sity restoration and habitat creation has provoked a debate
on provenance and genotypic diversity of the used plant
material. Nonlocal provenances are often not adapted to
the local environmental conditions, and low population
genotypic diversity may result in genetic bottlenecks ham-
pering successful establishment. We tested provenance dif-
ferentiation of four plant species used in agri-environment
schemes to increase biodiversity of agricultural landscapes
(wildflower strips). Provenances were collected close to
the experimental field and at four further sites of different
distances ranging from 120 to 900 km. In two of these
provenances, different levels of genotypic diversity were
simulated by sowing seed from a high and low number of
mother plants. We found a large provenance differentia-
tion in fitness-related traits, particularly in seedling emer-
gence. There was no evidence for a general superiority of

the local population. The productivity was greater in pop-
ulations of high genotypic diversity than in those of low
diversity, but the effect was only significant in one species.
Productivity was also more constant among populations
of high diversity, reducing the risk of establishment fail-
ure. Our results indicate that the choice of an appropriate
provenance and a sufficient genotypic diversity are impor-
tant issues in ecological restoration. The use of local prov-
enances does not always guarantee the best performance,
but a spread of superior alien genotypes can be avoided. A
sufficient genotypic diversity of the sown plants might be
a biological insurance against fluctuations in ecosystem pro-
cesses increasing the reliability of restoration measures.
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Introduction

Human impact has reduced species diversity in many eco-
systems as a result of habitat damage or even destruction.
During recent years, interest has increased to restore bio-
diversity and recreate habitats. Simply stopping negative
impact and recreating appropriate environmental condi-
tions are often not sufficient to reestablish species-rich
communities of native plants because nearby populations
that are required as propagule sources are not available
any more (Bischoff 2002; Walker et al. 2004). Thus, sow-
ing or planting of desired species has been increasingly
used to improve restoration success. Fields of application
range from reintroduction of rare species to sowing spe-
cifically designed seed mixtures for habitat creation
(Montalvo et al. 1997; Bullock et al. 2001; Bischoff et al.

2006b). However, the required translocation of plant mate-
rial has provoked a discussion on provenance and diversity
of the introduced populations (Hamilton 2001; Wilkinson
2001; Hufford & Mazer 2003). Recent studies have shown
that the approach has potential risks that may counteract
the desired effects if nonlocal provenances are used and
genotypic diversity of the source populations is too low
(Keller et al. 2000; Williams 2001; McKay et al. 2005).

The risks of introducing nonlocal provenances include
poor establishment of sown provenances owing to poor
adaptation to the prevailing environmental conditions
(Hamilton 2001; Hufford & Mazer 2003), superior alien
genotypes invading and displacing local populations
(Saltonstall 2002), and hybridization between introduced
and local populations that may result in outbreeding
depression, that is, a reduction of hybrid fitness relative to
their parents (Fenster & Galloway 2000; Keller et al. 2000;
Montalvo & Ellstrand 2001). Theory on local adaptation
predicts that local genotypes should perform better than
distant provenances when grown at their home site. Such
an adaptive genetic differentiation is well documented in
plant populations (Bradshaw 1984; Linhart & Grant 1996;
Galloway & Fenster 2000; Etterson 2004). Generally,
adaptation to a specific site is expected to decrease with
increasing spatial distance from the source population due
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to a concomitant increase in environmental distance and
genetic isolation (Keller & Kollmann 1999; Galloway &
Fenster 2000; Joshi et al. 2001). However, genetic differ-
entiation has also been shown on very small scales or even
within populations (Waser & Price 1985; Knight & Miller
2004; Lenssen et al. 2004; Bischoff et al. 2006a), reducing
the correlation between fitness and spatial distance of
a provenance.

In the present study, we analyzed effects of seed prove-
nance in four plant species of an established wildflower
seed mixture used to create wildflower strips in agricul-
tural landscapes. Such wildflower strips have been imple-
mented in Switzerland as ecological compensation areas
to restore species richness and cover currently 2,400 ha on
2,600 different farms (Swiss Federal Office for Agriculture
2005). We tested five provenances of the four species in
a field experiment, that is, one local provenance and four
provenances collected at different geographical and envi-
ronmental distances to the field site. Our aim was to ana-
lyze whether there is significant population differentiation
between provenances and whether performance is nega-
tively correlated with distance to the collection sites. Envi-
ronmental maternal effects may contribute to population
differentiation in plants (Roach & Wulff 1987; Donohue &
Schmitt 1998). In a previous study on the same five popu-
lations of the test species, seed weight contributed little to
among-provenance variation in germination and seedling
performance, suggesting that maternal effects were rela-
tively small (Bischoff et al. 2006b). To further check this
assumption, we additionally grew F1 seeds of one test spe-
cies produced under homogeneous conditions and com-
pared the provenance ranking in the F1 generation with
that of the parental generation.

Intraspecific diversity of the introduced plant material
is a second issue that may be important for ecological res-
toration, but few empirical studies have addressed this
issue. If seeds are collected from a limited number of sour-
ces, the level of genetic diversity is low and genetic bottle-
necks may occur in the restored populations (Hufford &
Mazer 2003). Procaccini and Piazzi (2001) observed that
genotypic diversity of the founders may have stronger
effects on the fitness of a population than the plant prove-
nance. Recent studies have shown that intraspecific diver-
sity, like species diversity, may be positively correlated
with productivity and ecosystem functioning (Reusch
et al. 2005; Crutsinger et al. 2006; Johnson et al. 2006).
Similar to the species diversity–productivity relationship,
a niche complementarity of different genotypes may be re-
sponsible for this correlation but also a ‘‘sampling effect’’
has been discussed as potential mechanism (Huston 1997;
Hector et al. 1999; Crutsinger et al. 2006). The sampling
effect predicts that a greater diversity increases the chance
of containing a highly productive genotype. A ‘‘portfolio
effect’’ (Tilman 1999) as a biological insurance has been
proposed to explain the faster recovery of high-diversity
stands of the sea grass Zostera marina after disturbance by
herbivores (Hughes & Stachowicz 2004) and climatic

extremes (Reusch et al. 2005). Due to differences among
genotypes in their resistance to herbivory and abiotic
stress, the chance that populations comprise appropriate
genotypes increases with genotypic diversity. Hence, vari-
ation in fitness among diverse populations is supposed to
be lower than in nondiverse populations, and the risk of
failure in establishment of single population may be
smaller. In our study, we tested for effects of genotypic
diversity on mean population productivity and among
population variability in two plant species. We manipu-
lated diversity levels by varying the number of seed fami-
lies sown into experimental plots.

We tested both provenance and diversity effects in
plants growing with and without surrounding vegetation
in order to examine whether they depend on the competi-
tion regime. Most earlier studies have been conducted
under noncompetitive conditions, assuming that the fit-
ness ranking of the populations remains the same under
natural competitive conditions (Bennington & McGraw
1995; Keller & Kollmann 1999; Joshi et al. 2001). How-
ever, such a correlation may be weak or absent, and other
experiments have illustrated the importance of the sur-
rounding vegetation as a potential driver of local adapta-
tion (Prati & Schmid 2000; Ehlers & Thompson 2004;
Bischoff et al. 2006a).

We addressed the following specific research questions:

(1) How strong is population differentiation among five
different European provenances in each of four spe-
cies and do the local provenances perform the best?

(2) What is the effect of genotypic diversity on mean popu-
lation productivity and among population variability?

Methods

Study Species, Provenances, and Sampling

We selected four species of a standard seed mixture used
to establish wildflower strips as ecological compensation
areas in Swiss agricultural landscapes. They represent dif-
ferent stages of succession from early to late: the annual
Legousia speculum-veneris (L.) Chaix (Primulaceae), the
biennial Echium vulgare L. (Boraginaceae), the short-
lived biennial or perennial Cichorium intybus L. (Astera-
ceae), and the late-successional perennial Origanum vulgare
L. (Lamiaceae). No further taxonomic differentiation is
known for central and western Europe except for the crop
varieties C. intybus ssp. sativus and ssp. foliosus, which
were excluded from the experiment (Tutin et al. 1976). All
four species are predominantly outcrossing, although in L.
speculum-veneris, E. vulgare, and C. intybus, selfing is also
possible. Legousia speculum-veneris is endangered in many
parts of Europe, and the other species are widespread.

We sampled one local and four nonlocal provenances
across climatic gradient (Table 1). The local western Swiss
(West CH) and the eastern Swiss (East CH) provenance
are characterized by a Subatlantic climate with high
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rainfall (1,000–1,250 mm per annum). The southern Ger-
man provenance (South D) originates from a Subatlantic
climate with average rainfall (650–850 mm per annum)
and the Central German one (Central D) from a subconti-
nental climate with low rainfall (450–500 mm per annum).
A typical Atlantic climate with mild winters is represented
by three subprovenances from western Europe (West
EUR), one from western France (C. intybus), and two
from the United Kingdom (E. vulgare and O. vulgare).
Legousia speculum-veneris seeds were not available from
central Germany and western Europe because the species
has become extremely rare at the edge of the range.

Seeds of the local West CH and the Central D prove-
nance were collected from the wild in populations of at
least 150 individuals. The local provenance was sampled
within a 10 km radius of the experimental site. To ensure
a genotypic diversity representative of a population, seeds
from 40 haphazardly chosen mother plants, separated by at
least 5 m, were harvested. The seeds of each mother plant
were kept separately and stored dry at room temperature
until sowing in the following spring. Seeds of the remaining
provenances were collected from populations in stock pro-
vided by botanical gardens or by companies specialized in
wild seed production for conservation purposes. Only seed
suppliers were chosen who could give information on the
original collection site and who regularly replace stocks by
wild collections. The suppliers guaranteed that seeds were
not selected for size and that they were stored at room
temperature for not longer than 2 years.

Testing for Provenance Effects

In April 2002, we sowed the seeds into 2 3 2–m2 plots of
a previously plowed and harrowed arable field 10 km
north of Fribourg in western Swiss midlands. Each plot
comprised seeds of one provenance 3 species combina-
tion sown in a central grid of 24 cells (0.2 3 0.2 m2) with
six seeds per grid cell. A higher number of 10 seeds per
grid cell was chosen in O. vulgare because seeds are very
small and are known to show a high mortality in the soil
(Pons 1991). In the competition treatment, half of all plots
were additionally sown with the usual wildflower strip

seed mixture that comprises 24 species in a total density of
600 seeds/m2. In the other half of the plots (no competi-
tion), the space between the test plants was regularly
weeded. For each species, the 10 different treatment com-
binations (5 provenances [L. speculum-veneris: 3] 3 2 com-
petition) were arranged randomly within eight replicate
blocks resulting in a total of 288 plots.

In order to test for maternal effects, seeds of a second
generation of all L. speculum-veneris provenances were
produced by plants grown under homogeneous conditions
in the botanical garden of the University of Fribourg. We
used nylon mesh cages to avoid cross-pollination between
the provenances. Cages of the same provenance were
opened for periods of 5 days to allow within-provenance
pollination. The F1 seeds were sown 1 year later, in 2003,
following the described procedure except that 10 instead
of 6 seeds were placed into each grid cell.

Testing for Genotypic Diversity

A high- and a low-diversity treatment were established for
provenances collected from the wild (West CH and Cen-
tral D). The plots were divided into two subplots with 12
grid cells each. In the high-diversity subplot, each grid cell
received seeds of a different mother plant, resulting in 12
seed families per subplot. We randomly selected seed fam-
ilies from the pool of 40 sampled mother plants per popu-
lation, that is, each seed family occurred on average in 2.4
subplots. In the low-diversity subplot, two seed families
were selected from the same pool, and seeds of each fam-
ily were randomly assigned to six grid cells per subplot.
Selection of the two seed families per subplot was random
but contrary to the high-diversity treatment; multiple
selection of the same family was prevented to achieve
a maximum representation of the entire family pool, that
is, altogether 16 families (8 subplots 3 2 families). The
aim was to avoid a confounding of treatment and family
(genotype identity) effects. Although not confirmed by
genetic marker analysis, we assume that genetic diversity
is a function of family number. Offspring from the same
mother plants have a larger genetic similarity than those
from different plants because they share at least one

Table 1. Sampling scheme and characteristic of collection sites.

Collection Site Source Distance (km) Climate, Humidity Diversity Experiment

West CH Fribourg state Wild Local (<10) Suboceanic, moist Yes
East CH Winterthur state Stock 120–200 Suboceanic, moist No
South D South Hesse, North Baden Stock 300–450 Suboceanic, medium No
Central D South Sachsen-Anhalt Wild 600–650 Subcontinental, dry Yes
West EUR Sommerseta,

Norfolkb,
Bordeauxc

Stock 650–900 Oceanic, medium No

Only the provenances collected from the wild (West CH and Central D) were used for the diversity experiment.
a Echium vulgare.
b Origanum vulgare.
c Cichorium intybus.
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parent (half-sib family). Because family sets are random
subsamples of the same population and only the first gen-
eration of plants is tested, there are no inbreeding effects,
and the average level of heterozygosity is expected to be
the same in the high- and low-diversity treatment. A com-
petition treatment was applied in the same way as in the
test of seed provenance.

Measurements

We recorded seedling emergence 5 and 10 weeks after
sowing in late May. Afterward, the number of seedlings
was reduced to one per grid cell, that is, ideally 24 per
plot. We kept plants of average size and removed later
emerging seedlings. Moderate within-treatment trans-
planting from cells with spare seedlings was used to reduce
the number of empty cells and to keep the number of
plants constant among plots and treatments. Transplants
were only considered for data analysis if they survived for
at least 8 weeks until late summer.

We analyzed survival in all test plants and growth and
reproduction in six randomly selected focal plants per
plot. Plants were measured twice in 2002 and thrice in
2003 and 2004 (except for L. speculum-veneris). We regu-
larly recorded the number of leaves and the length of the
longest leaf, in O. vulgare additionally the number of basal
shoots and the length of the longest shoot. In the other
species, shoot length, shoot number (E. vulgare and C.
intybus), and number of inflorescences (L. speculum-
veneris) were measured after bolting. At the end of the
flowering period, we recorded the number of capsules
(L. speculum-veneris), cymes (E. vulgare), flower heads
(C. intybus), and fertile shoots (O. vulgare). Seed produc-
tion was estimated by counting the number of seeds in a
subsample of these reproductive units. In the monocarpic
species L. speculum-veneris and E. vulgare, aboveground
parts of all focal plants were harvested after reproduction
in 2002 and 2003, in O. vulgare at the end of the experi-
ment in 2004. The plants were dried at 80�C for 48 hours
and weighed. Due to potential differences in the life cycle
of C. intybus populations (biennial vs. perennial), we deci-
ded to observe the plants until the end of the experiment
instead of harvesting them after flowering in 2003.

Data Analysis

As an estimate of fitness combining several fitness-related
traits, the dominant eigenvalues (k, finite rate of popula-
tion growth) of Leslie matrices were calculated based on
seedling emergence, fecundity (seed production), and sur-
vival at plot level (Charlesworth 1994; Bischoff et al.
2006a). The calculation of k was preferred over total
reproduction because k accounts for the higher contribu-
tion of first-year fecundity to population growth (McGraw
& Caswell 1996). The calculated k does not reflect the real
growth rate because seeds were sown to bare ground and
burial of seeds in the soil was much shorter than in nature,

reducing the risk of seed losses due to predation or harsh
winter conditions. Thus, we will refer to the matrix eigen-
value as ‘‘fitness coefficient.’’ The matrix model could not
be applied to the annual species L. speculum-veneris.
Instead, the fitness coefficient was calculated as the prod-
uct of seedling emergence, survival, and fecundity.

In the test of seed provenance, an analysis of variance
(ANOVA) model was applied using provenance, competi-
tion, the provenance 3 competition interaction, and block
as fixed factors and block means (n ¼ 8) as response varia-
bles. Tukey honestly significant difference (HSD) post
hoc test was calculated for multiple comparisons of the
means. All analyses were applied separately for each spe-
cies because the full model revealed a significant species 3

provenance interaction. Traits measured repeatedly on the
same plants (vegetative growth) were analyzed using
repeated measures ANOVA. Seedling emergence and sur-
vival were arcsine square root transformed, and growth
traits, seed production, and fitness coefficients were log
(x 1 1) or square root transformed if necessary to meet
the assumptions of ANOVA.

In the test of genotypic diversity, a hierarchical mixed-
model ANOVA was applied to a subset of three species
(E. vulgare, C. intybus, and O. vulgare) and the two prove-
nances (local West CH and Central D) that were directly
collected from the wild. The model included diversity, pro-
venance, competition, and block as fixed factors and plot
nested in provenance, competition, and block as random
factors. For calculating F values, provenance, competition,
the provenance 3 competition interaction, and block were
tested against plot, whereas diversity and all interactions
with diversity were tested against the residuals. Coeffi-
cients of variation were calculated for plot productivity
(vegetative growth and seed production) to analyze the
effect of genotypic diversity on variability among popula-
tions of the different plots.

Results

Provenance Effects

In all four study species, significant differences in fitness co-
efficients were observed between provenances (Table 2).
This was mainly due to differences in seedling emergence
that were highly significant in all species. The provenance
effect on survival was significant in Echium vulgare, Cicho-
rium intybus, and Origanum vulgare but not in Legousia
speculum-veneris. Seed production as the third variable
included in calculation of fitness coefficients was only signif-
icant in C. intybus. Strong differentiation in vegetative traits
was found for O. vulgare and C. intybus. In both species,
leaf number and leaf and shoot length were significantly
different but not the number of basal shoots. Significant dif-
ferences in final biomass of O. vulgare did not result in sig-
nificant differences in final seed number, indicating that
provenance effects on reproduction are not necessarily
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related to provenance effects on vegetative growth. For the
two other species, L. speculum-veneris and E. vulgare, prov-
enance differentiation was only significant for leaf traits but
not for shoot length, shoot number, or biomass. The
repeated measures analysis revealed significant provenance
3 time interactions for leaf length of E. vulgare and leaf
number and shoot length of O. vulgare, demonstrating that
magnitude of provenance differentiation and/or prove-
nance ranking may depend on the time of measurement.

The most outstanding difference between provenances
was found for C. intybus. The local plants (West CH) and
plants from East CH and West EUR showed a biennial
life cycle and died after flowering in the second year. In
the South D and East D provenance, plants were peren-
nial, and new shoots emerged in spring of the third year
from the basis of the old flowering stems. Results pre-
sented in Table 2 and Figure 1 include only measurements

from the first 2 years because only second-generation
seedlings remained in the biennial plants, and these seed-
lings most likely include interprovenance hybrids.

The ranking of provenances in fitness coefficients dif-
fered among species (Fig. 1), and there was no evidence
for a general superiority of the local provenance from
western Switzerland. The local plants of E. vulgare per-
formed better than foreign provenances, but the differ-
ence was only significant in comparison with the West
EUR provenance from the United Kingdom (p < 0.001,
Tukey HSD). In L. speculum-veneris and O. vulgare, the
local plants showed a lower performance than plants from
East CH, South D, and Central D (p < 0.05, Tukey HSD).
Plants from the most distant West EUR provenance had
a significantly lower fitness than all other provenances in
two out of three species (E. vulgare: p < 0.001; O. vulgare:
p < 0.05, Tukey HSD).

Table 2. F values and level of significance of the effects of provenance and competition on fitness-related traits; values resulting from repeated

measures analysis are in italics if interaction with time is significant (T: number of measurements).

Provenance (P), df 4(2) Competition (C), df 1 P 3 C, df 4(2) Block, df 7

Legousia speculum-veneris
Fitness coefficient 16.11*** 45.52*** 2.87(*) 4.09**
Seedling emergence 62.61*** 0.19 1.44 3.17*
Final survival 1.27 0.25 2.71(*) 3.64**
Capsule number 0.79 65.29*** 1.37 4.14**
Leaf number 11.02*** 0.96 1.85 3.40**
Inflorescence number 0.54 37.11*** 1.67 4.12**
Shoot length 3.25(*) 2.63 2.43 5.10***
Final biomass 0.14 43.68*** 0.42 2.13(*)

Echium vulgare
Fitness coefficient 12.82*** 26.27*** 1.66 0.75
Seedling emergence 69.55*** 23.22** 1.73 9.26***
Final survival 3.46* 24.02*** 1.13 2.18*
Seed number 0.69 7.31** 0.75 2.11(*)

Basal shoot number 1.40 15.41*** 0.83 1.88(*)

Shoot length 2.48(*) 0.25 2.09(*) 4.41***
Final biomass 0.92 11.40** 0.09 1.93(*)

Leaf number (T ¼ 3) 2.62* 19.02*** 0.22 2.41*
Leaf length (T ¼ 3) 2.91* 3.94(*) 1.10 5.81***

Cichorium intybus
Fitness coefficient 2.49(*) 59.36*** 0.49 4.90***
Seedling emergence 24.12*** 6.06* 1.98 6.70***
Final survival 5.32*** 4.53* 2.11(*) 4.23***
Final seed number 3.89** 46.26*** 0.87 3.10**
Basal shoot number 0.64 74.85*** 1.72 0.84
Shoot length 29.16*** 5.83* 1.41 3.04**
Leaf number (T ¼ 3) 4.36** 131.15*** 1.46 1.75(*)

Leaf length (T ¼ 3) 4.75** 17.92*** 0.18 4.02**
Origanum vulgare

Fitness coefficient 29.36*** 136.97*** 0.68 2.17*
Seedling emergence 19.16*** 2.43 0.21 1.86(*)

Final survival 2.67* 6.15* 0.16 0.35
Final seed number 1.93 127.79*** 1.57 2.77*
Final biomass 3.13* 190.51*** 0.62 4.56***
Leaf number (T ¼ 7) 4.03** 30.16*** 1.41 2.66***
Leaf length (T ¼ 7) 8.83*** 26.07*** 2.78* 6.06***
Basal shoots (T ¼ 8) 0.62 139.37*** 0.65 0.71
Shoot length (T ¼ 8) 7.58*** 67.98*** 1.87 8.91***

(*) p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001.
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The competition treatment had a highly significant
effect on survival (except for L. speculum-veneris) growth,
reproduction, and resulting fitness coefficient, whereas
seedling emergence was only affected in E. vulgare and
Ci. intybus (Table 2). The interaction provenance 3 com-
petition was not significant for most measured traits indi-
cating a high stability of provenance differentiation in the
two competitive environments.

In a test for environmental maternal effects, second-
generation plants of L. speculum-veneris from mothers
grown under homogeneous conditions showed the same
provenance ranking in fitness (pooled for competition) as
first-generation plants from the original seed material, that
is, West CH < South D < East CH. However, the prove-
nance effect was only marginally significant in second-
generation plants (F ¼ 2.70, p ¼ 0.081) and a significant
generation 3 provenance interaction occurred (F ¼ 9.63,
p < 0.001). The weakening of provenance differentiation
in second-generation plants could be interpreted as a small
contribution of maternal effects to provenance differentia-
tion of first-generation plants.

Effects of Genotypic Diversity

In O. vulgare, the diversity effect on plot productivity was
significant (Table 3). The cumulative height and the seed

number of all focal plants within one subplot were signifi-
cantly higher in subplots of high genotypic diversity than
in subplots of low genotypic diversity (Fig. 2). In C. inty-
bus, a trend of higher plot productivity, in E. vulgare
a trend of lower plot productivity, was found in high-
diversity subplots compared with low-diversity subplots,
but differences were not significant (Fig. 2). The interac-
tion diversity 3 competition was not significant (Table 3),
indicating that diversity effects on plot productivity are
relatively stable over the competition treatments. There-
fore, only data pooled for competition are presented in
Figure 2. The diversity 3 provenance and the diversity 3

competition 3 provenance interaction were also not sig-
nificant. However, data were not pooled for provenance in
Figure 2 in order to compare the magnitude of diversity
and provenance effects. In E. vulgare, the magnitude of
the diversity effect was larger than that of provenance; in
C. intybus, it was lower; and in O. vulgare, a similar magni-
tude was observed.

The coefficient of variation as a measure of among-plot
variability was lower among high-diversity subplots than
among low-diversity subplots (Fig. 3). The difference
between high and low diversity was larger in the West CH
than in the Central D provenance. When not corrected for
mean values (variance and SE), no differences in among-
subplot variation occurred between high and low diversity.

Figure 1. Performance of four provenances and species grown with addition of a seed mixture (competition) and in weeded monocultures (no

competition); fitness coefficient ¼ k of Leslie matrices based on seedling emergence, survival, and seed production; ± SE.
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Discussion

Importance of Seed Provenance

We found a strong provenance differentiation in individ-
ual traits and fitness coefficients of all four test species. A
similar provenance differentiation at a comparable geo-
graphic scale has been found in studies on perennial spe-
cies (Joshi et al. 2001; Santamaria et al. 2003; Bischoff
et al. 2006a). A smaller differentiation was observed in an
early-successional species of disturbed habitats that expe-
rience frequent population turnover (Galloway & Fenster
2000). Our study species represent different stages of suc-
cession ranging from early (Legousia speculum-veneris) to
late (Origanum vulgare) successional. However, even the
annual L. speculum-veneris does not experience frequent
turnover because the arable species survives regular dis-
turbance in the soil seed bank (Schneider et al. 1994).

In all species, provenance differentiation was found to
be much stronger in seedling emergence than in later
stages of the plant development, indicating that particu-
larly short- and medium-term restoration sites such as
wildflower strips may be largely dependent on seed prove-
nance. In Cichorium intybus, the life cycle was different
being biennial in the two Swiss and the western France
provenances and perennial in the two German provenan-
ces. Such an extreme within-taxon variation in life cycles
has been found in several other species of the Asteraceae
family (Huiskes et al. 2000 for Aster tripolium; Müller-
Schärer et al. 2004 for Centaurea maculosa).

Population differentiation in plants is the result of vari-
ous evolutionary processes such as differential selection,
genetic drift, and different levels of inbreeding (Linhart &
Grant 1996; Galloway & Fenster 2000). If differential selec-
tion is strong enough to overcome the homogenizing effect
of gene flow, adaptation to local site conditions may occur
(Linhart & Grant 1996). Such an adaptive genetic differen-
tiation among plant populations was found in many studies
(Bradshaw 1984; Linhart & Grant 1996; Joshi et al. 2001;
Santamaria et al. 2003; Etterson 2004), and an overall supe-
riority of local compared with alien provenances can be

expected. In our study, however, we did not find much evi-
dence for a superiority of the local provenance. Only in
Echium vulgare, the local provenance performed the best,
and the difference was significant compared with the most
distant provenance from the United Kingdom. In the three
other species, the fitness coefficient of the local provenance
was lower than that of most foreign provenances.

There are several reasons that may explain the lack of
local adaptation. For example, methodological constraints
can prevent the detection of a home site advantage. First,
drivers of adaptation may be infrequent but characteristic
selective events, such as extreme frost or drought
(Montalvo et al. 1997). To account for such events, experi-
ments would have to be run for several decades, which is
usually not feasible. Second, in restoration approaches,
the target sites are never identical with the collection sites.
Small differences in local site conditions such as substrate
type, soil humidity, and history of land use cannot be
avoided even if seeds are collected in the neighborhood.
Several studies have shown a small-scale adaptation to
such local habitat differentiation (Waser & Price 1985;
Knight & Miller 2004; Lenssen et al. 2004; Bischoff et al.
2006a), which may reduce the correlation between popula-
tion differentiation and geographical distance. Third, envi-
ronmental maternal effects might have contributed to the
observed provenance differentiation. In particular, differ-
ences in germination can be inflated by heterogeneous
environmental conditions among sites at which seeds were
collected (Roach & Wulff 1987; Donohue & Schmitt
1998). In one species, L. speculum-veneris, we further com-
pared the performance of second-generation plants from
mothers grown under homogeneous conditions with that
of plants grown from the original seed material. There
was some weakening of provenance differentiation, but
the ranking was the same and differences remained signifi-
cant, confirming that the contribution of environmental
maternal effects was probably small. In an earlier study on
the same populations, controlling for maternal effects by
using seed mass as covariate in the analysis did not
decrease among-provenance differences in germination,

Table 3. Results of an ANOVA model testing the effect of genotypic diversity, provenance, and competition on plot productivity; F values and

level of significance separately for cumulative height and seed production; block and plot were also fitted but not presented in the table (df ¼ 1 for

all factors and interactions).

Diversity (D) Provenance (P) Competition (C) D 3 P D 3 C P 3 C D 3 P 3 C

Echium vulgare
Cumulative heighta (F[1,28]) 2.12 0.10 22.73*** 0.53 1.68 2.96 1.23
Seeds (F[1,28]) 1.11 0.21 7.58* 0.06 2.43 0.69 0.29

Cichorium intybus
Cumulative heighta (F[1,28]) 0.01 36.64*** 76.46*** 0.99 0.25 0.67 0.30
Seeds (F[1,28]) 1.56 19.94*** 56.18*** 0.71 0.55 0.02 0.24

Origanum vulgare
Cumulative heighta (F[1,28]) 9.34** 22.80*** 71.24*** 3.77 1.03 1.99 0.53
Seeds (F[1,28]) 7.43** 10.47** 47.70*** 1.24 0.58 0.46 0.08

a Cumulative height ¼ height of the longest shoot 3 number of basal shoots per plot.
* p < 0.05; ** p < 0.01; *** p < 0.001.

Importance of Provenance and Genotypic Diversity

344 Restoration Ecology MAY 2010



indicating that population differentiation is largely geneti-
cally determined (Bischoff et al. 2006b).

Besides methodological constraints preventing a detec-
tion of the superiority of local provenances, maladaptation
may also be real (Crespi 2000). A superiority of nonlocal
genotypes at particular sites has repeatedly been observed
in reciprocal transplant experiments (Galloway & Fenster
2000; Leiss & Müller-Schärer 2001; Santamaria et al. 2003).
Environmental changes like global warming or conversion
of management might have resulted in a disruption of
local adaptation. Our test species predominantly occur in
anthropogenic or seminatural habitats where management
has largely changed in recent decades (e.g., Joyce & Wade
1998 for grasslands), and it is possible that they are no lon-

ger adapted to the current environmental conditions. Evi-
dence for a real superiority of nonlocal provenances came
from a study on North American Phragmites australis pop-
ulations. A foreign genotype has invaded many natural
sites and completely displaced the local genotypes of this
species (Saltonstall 2002).

The provenance differentiation was not much affected
by the competition treatment, and provenance ranking
was largely stable in both environments. A relatively bet-
ter performance of the local compared with alien prove-
nances could be expected in the competition treatment if
the competitive environment mimics more closely the
local conditions. For example, resource availability and
microclimate depend on the competitive environment. In

Figure 2. The effect of genotypic diversity on vegetative growth and reproduction in a subset of two provenances; open bars: low diversity (seeds

from 2 mother plants per plot) and filled bars: high diversity (seeds from 12 mother plants per plot); data pooled for competition treatment;

different letters indicate significant differences of Tukey HSD post hoc test applied separately for competition treatments; ± SE.
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a field study on Hydrocotyle bonariensis plants from high
and low elevations of sand dunes, the home site advantage
in total biomass was larger in presence of the natural vege-
tation than in a vegetation removal treatment (Knight &
Miller 2004). However, the effects are not always strong,
and a home site advantage may also be less pronounced in
competition to a plant community than in weeded mono-
cultures (Kindell et al. 1996; Bischoff et al. 2006a).

Importance of Genotypic Diversity

We found large differences in productivity between stands
of high and low genotypic diversity. The magnitude of dif-
ference was as high as between the two tested provenances,
but due to the high scatter of data, the diversity effect was
only significant in one species, O. vulgare. In this species,
seed production and biomass per plot were significantly
higher in the high-diversity treatment. A negative effect of
low genotypic diversity on average performance of a popu-
lation has been observed in many studies, but in most cases,
it has been explained by genotypic drift or inbreeding,
resulting in a low degree of heterozygosity (Procaccini &
Piazzi 2001; Williams 2001; Vergeer et al. 2003). In our
study, we assumed that the level of heterozygosity was the
same because we sampled the same populations to establish
a high- and low-diversity treatment, and our experiment
was restricted to first-generation offspring of parental seed.
Thus, inbreeding depression and drift effects were ex-
cluded, and the treatments only differed in the number of
seed families. Such an approach to test the effect of geno-
typic diversity on plant performance has rarely been used
so far. In two recent studies testing three and four diversity
levels, a greater genotypic diversity led to higher productiv-
ity (Crutsinger et al. 2006; Johnson et al. 2006). The authors
found that qualitative and quantitative effects of genotypic
diversity can be similar to those of plant species diversity.

In analogy to the effects of species diversity on ecosystem
functioning, there might be two mechanisms through which
genotypic diversity within species can affect productivity
or resistance to disturbance. First, positive interactions

between different genotypes may increase productivity.
Niche complementarity of different species was found to
improve the utilization of resources, resulting in overyield-
ing (Hector et al. 1999; Tilman 1999). The productivity of
multigenotype mixture would then be higher than the aver-
age productivity of monocultures of those genotypes. There
may also be positive mutualistic interactions between spe-
cies, and the probability of such interaction increases with
diversity (Hector et al. 1999). However, in our study, inter-
actions between individuals of different genotypes can only
be assumed in the weeded monocultures where intraspecific
competition became apparent in the second growing sea-
son. In competition to the usual wildflower strip mixture
(competition treatment), interspecific competition was
dominant, and interactions between genotypes of our test
species can be neglected. Because high genotypic diversity
increased productivity also in the competition treatment,
the diversity effect was unlikely the result of positive inter-
actions between different genotypes.

Second, diversity effects can also be explained without
assuming competitive or mutualistic interactions between
different genotypes. Noninteractive or ‘‘additive’’ effects of
species diversity on productivity have sometimes been sub-
divided into two similar mechanisms, the sampling effect
and the portfolio effect. The sampling effect predicts that
a greater genotypic or species diversity increases the chance
of containing a highly productive species or genotype
(Huston 1997; Hector et al. 1999). The portfolio effect takes
into account that plant populations and communities face
fluctuations in environmental conditions (Tilman 1999). A
higher diversity increases the chance that under different
conditions including disturbances appropriate species or
genotypes are available. So, species diversity can have a
buffering and stabilizing effect on the productivity of plant
communities (Loreau 2000). A similar effect of genotypic
diversity within a population was observed in a study on
the sea grass Zostera marina (Hughes & Stachowicz 2004).
A higher productivity as a result of greater diversity was
only found after disturbance by grazing geese, indicating
that this was not only a sampling effect. A positive effect of

Figure 3. The effect of genotypic diversity on among-plot variation (coefficient of variation) in vegetative growth and reproduction; open bars:

low diversity (2 mother plants per plot) and filled bars: high diversity (12 mother plants per plot); data pooled for species and competition; ± SE.
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genotypic diversity on population recovery of Z. marina
was also observed after climatic extremes (Reusch et al.
2005). In our study, the greater productivity in high-
diversity subplots compared with low-diversity ones was
probably the result of such a sampling or portfolio effect.
Considerable fluctuations in environmental conditions
occurred during the study period including a wet summer
in 2002 and a dry and hot one in 2003.

Some evidence for a stabilizing effect of genotypic diver-
sity derives from the comparison of among-plot variability
in productivity. This variability is smaller under high than
under low diversity if corrected for mean values (coeffi-
cient of variation). In restoration practice, the risk of a com-
plete failure in establishment at a particular site increases
with decreasing genotypic diversity of the founders. How-
ever, it has to be considered that a lower variability among
high-diversity subplots may be partly due to its larger geno-
type identity compared with the low-diversity subplots. In
the high-diversity treatment, an average of 20% of the
founders were identical among subplots, whereas there was
no overlap in the low-diversity treatment.

The approach of using the number of mother plants or
seed families as an indicator of genetic diversity could be eas-
ily applied in restoration practice but it has some limitations
in small and inbred populations. Inbreeding and genetic drift
can reduce within-population genetic diversity (Procaccini &
Piazzi 2001; Vergeer et al. 2003) and may result in small
diversity differences among sets of high and low numbers of
seed families. In our study, a low genetic diversity of the
source populations may be an explanation for the lack of
significant differences in E. vulgare and C. intybus. If within-
population diversity is low, a sampling from different popula-
tions is required to increase genetic diversity.

Implications for Practice

d Seed provenance and genotypic diversity may have
strong effects on the performance of populations intro-
duced for biodiversity restoration or habitat creation.

d The use of local provenances is recommended. It
does not guarantee best performance and establish-
ment of the restored populations, but the risk of
spreading undesired alien genotypes can be avoided.

d The number of sampled mother plants should be max-
imized to obtain a high genotypic diversity of the
restored populations. If source populations are small
and/or inbred, a sampling from several different popu-
lations has to be considered. A sufficient genotypic
diversity of the sown plants might be a biological
insurance against fluctuations in ecosystem processes
and thus increases the success of restoration measures.

d Further studies are required to improve knowledge on
the relationship between fitness and genetic architec-
ture. Simplified assemblages of plants grown without
competition allow a good prediction of provenance
and diversity effects in restoration practice.
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