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Common ragweed (Ambrosia artemisiifolia L.) is a widely distributed and harmful invasive plant that is an impor-
tant source of highly allergenic pollen grains and a prominent cropweed. As a result, ragweed causes huge costs to
both human health and agriculture in affected areas. Efficient mitigation requires accurate mapping of ragweed
densities that, until now, has not been achieved accurately for the whole of Europe. Here we provide two invento-
ries of common ragweed abundances with grid resolutions of 1 km and 10 km. These “top-down” inventories in-
tegrate pollen data from 349 stations in Europe with habitat and landscape management information, derived
from land cover data and expert knowledge. This allows us to cover areas where surface observations are missing.
Model results were validated using “bottom–up” data of common ragweed in Austria and Serbia. Results show
high agreement between the two analytical methods. The inventory shows that areas with the lowest ragweed
abundances are found in Northern and Southern European countries and the highest abundances are in parts of
Russia, parts of Ukraine and the Pannonian Plain. Smaller hotspots are found in Northern Italy, the Rhône Valley
in France and in Turkey. The top-down approach is based on a new approach that allows for cross-continental
studies and is applicable to other anemophilous species. Due to its simplicity, it can be used to investigate such spe-
cies that are difficult and costly to identify at larger scales using traditional vegetation surveys or remote sensing.
The final inventory is open source and available as a georeferenced tif file, allowing for multiple usages, reducing
costs for health services and agriculture through well-targeted management interventions.
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1. Introduction
Common ragweed (Ambrosia artemisiifolia L.) is an invasive species
that occupies many different ecosystems (Essl et al., 2015; Smith et al.,
2013). The plant is a major weed in crop fields, but has achieved notori-
ety for its worldwide impact on human health. Ambrosia is anemophi-
lous and its pollen is an important aeroallergen and significant cause
of seasonal asthma and rhinitis where the plant is recorded (Smith
et al., 2013; White and Bernstein, 2003). Common ragweed is particu-
larly abundant in the Northern Hemisphere and its presence results in
high atmospheric concentrations of pollen in North America (Zhang
et al., 2015), where it is native, and regions outside of its native range
such as China (Li et al., 2012; Sun et al., 2017c) and Europe (Essl et al.,
2015; Sikoparija et al., 2017), where the plant has invaded vast geo-
graphical areas covering thousands of kilometres. In Europe, sensitisa-
tion rates to Ambrosia pollen allergens range from b2.5% in Finland to
N50% in known centres of ragweed infestation such as Budapest,
Hungary (Burbach et al., 2009; Heinzerling et al., 2009; Sikoparija
et al., 2017; Smith et al., 2013).

A mature common ragweed plant can produce more than a billion
pollen grains (Fumanal et al., 2007) that, due to their small size, fre-
quently undergo continental scale atmospheric transport (Šikoparija
et al., 2013; Smith et al., 2013). Common ragweed has been observed
to increase its pollen production under higher CO2 concentrations
(Rogers et al., 2006) and within urban environments (Ziska et al.,
2003). Under climate change, the plant is projected to expand its
range in Europe to the north and east (Sun et al., 2017a, b). Airborne
concentrations of Ambrosia pollen are expected to increase due to the
plant's accelerated invasion into new ecosystems, its increased pollen
production, and enhanced atmospheric transport (Hamaoui-Laguel
et al., 2015). Similarly, recent findings suggest possible expansion of
its range in North America at the northern margins of its current distri-
bution and contraction to the south (Case and Stinson, 2018), as well as
towards north and east in East Asia (Sun et al., 2017c). Suitable habitats
and distribution of common ragweed have been modelled for present
and future conditions in Europe (Essl et al., 2015; Sun et al., 2017b),
but inventories documenting abundances across whole continents in-
cluding Europe are largely absent.

Knowledge of abundances of common ragweed at the continental
scale is important for pollen forecasting (Prank et al., 2013; Zink et al.,
2012, 2017) and for mitigation strategies that aim at a sustainable re-
duction in plant density and pollen exposure. Unfortunately, the avail-
ability of the required plant occurrence records of invasive species like
common ragweed is often limited (Müller-Schärer et al., 2018). Conse-
quently, the spatial and temporal resolution of abundance data for com-
mon ragweed in Europe is very heterogeneous, which hampers
mapping of the distribution and abundance of the plant. There have
been several attempts to model the distribution of common ragweed
using either occurrence data (Bullock et al., 2010) or ecosystemmodels
(Chapman et al., 2014; Rasmussen et al., 2017; Storkey et al., 2014), but
all these studies have limitations describing actual abundances
(Matyasovszky et al., 2018; Thibaudon et al., 2014). A main constraint
is that the invasion of common ragweed is still ongoing in many coun-
tries (Karrer et al., 2015; Onen et al., 2014) and management of the
landscape often increases invasion (Richter et al., 2013). However,
most continental scale ecosystem models do not contain information
on nation-specific management of the landscape, as this is difficult to
obtain for all Europe when it comes to agriculture (Werner et al.,
2015). Remote sensing basedmethods used to detect common ragweed
over large areas are also challenging, especially since pollen-producing
plants can be surprisingly small and usually occur in mixed herbaceous
vegetation (Essl et al., 2015). Other approaches for creating inventories
are therefore needed.

The ragweed beetleOphraella communa LeSage has recently invaded
Northern Italy and has been shown to clear large fields of common rag-
weed (Müller-Schärer et al., 2014, 2018) thereby affecting the overall
pollen emission in the area (Bonini et al., 2017) and significantly reduc-
ing airborne Ambrosia pollen concentrations (Bonini et al., 2015, 2016).
If this beetle becomes abundant locally or actively spreads into new
areas with large infestations of common ragweed, then this may have
a large positive impact on human health (Mouttet et al., 2018). It is
therefore important to have complete and up-to-date source maps for
common ragweed showing levels of O. communa infestation so they
can be used for mitigation and pollen forecasting purposes. In addition,
thewell-documented populations of ragweed in France, Italy and on the
Pannonian Plain need to extend to the less well known, but very impor-
tant, source regions in Ukraine and Russia. This is because atmospheric
transport from these areas regularly contributes to airborne Ambrosia
pollen concentrations recorded in Europe and western Asia; e.g.
Poland (Bilińska et al., 2017; Kasprzyk et al., 2011), Denmark
(Sommer et al., 2015) and Turkey (Celenk and Malyer, 2017; Zemmer
et al., 2012). Furthermore, such data should clearly identify the invasion
fronts of common ragweed as the level of infestation in a given area af-
fects the mitigation strategies that are likely to be successful (Milakovic
et al., 2014; Lommen et al., 2018). Finally, the quality of the inventories
should be validated, ideally using independent data.

Themain aim of this study is to produce a validated inventory of rag-
weed abundance for Europe. Thiswas achieved by developing a new ap-
proach that allowed the plant's abundances to be mapped over the
entire European Continent and then validating this inventory using
both cross validations and independent plant-based occurrence data
of common ragweed in Serbia and Austria. The proposed approach is
designed to be globally applicable for anemophilous species that are
otherwise difficult to map, not just ragweed. Finally, the inventory we
present here for ragweed abundances is available as open access in an
easy to use format.

2. Materials and methods

2.1. Generalised method for generation of the European ragweed inventory
using pollen data

Making inventories of flowering plants can be carried out using two
approaches: 1) Bottom-up approaches that typically are produced using
statistical analysis of plant abundance or 2) top-down approaches
where a measured quantity of pollen as a starting point (Skjøth et al.,
2013). For an anemophilous species like common ragweed, spatial
data of airborne pollen concentrations can help to construct abundance
maps (Müller-Schärer et al., 2018). It has been shown that using pollen
data to generate “top-down” inventories for France produced better
pollen forecasts than “bottom–up” inventories based on available occur-
rence data of common ragweed plants (Zink et al., 2017). Top-down in-
ventories based on pollen data have been made available for the
Pannonian Plain (Skjøth et al., 2010), Austria (Karrer et al., 2015) and
Italy (Bonini et al., 2017). These inventories provided datawith different
geographical resolutions and as a result had compatibility problems
near the boundaries where maps overlapped (Karrer et al., 2015). Fur-
thermore, gaps in available data have prevented the mapping of impor-
tant ragweed areas such as western Ukraine (Skjøth et al., 2010).
Therefore, no European-wide inventory has previously been produced.

Fig. 1 illustrates the most important steps and the datasets needed
for producing continental wide inventories. Step 1 is to create a
harmonised and geographically consistent dataset (Fig. 1, left column)
that includes both the habitats that are populated by the plant (in the
case of ragweed this varies geographically, as seen in Table 1). This is
then combined with information known to restrict the presence of the
plant. The approach for ragweed is described in detail in Section 2.1.1.
The second step is to include the presence and absence of pollen data
of the plant in question (Fig. 1, middle column). Favourable habitats
may or may not be populated by a plant and so the presence/absence
of airborne pollen recorded at specific geographical locations is impor-
tant for determining the plant's coverage. Conceptually, the pollen



Fig. 1. Conceptual figure illustrating data flow and needed data sets for producing continental-wide inventories using the top-down approach.
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data is a point based dataset which can be used to calculate local abun-
dance. The approach for ragweed is described in detail in Section 2.1.2.
The last dataset is the station footprint area (Fig. 1, right column). This
is used to calculate abundance within a region (e.g. Skjøth et al., 2010;
Thibaudon et al., 2014), which is termed the infestation level of the
plant (e.g. invasive ragweed). The footprint area can be based on simple
circles (Skjøth et al., 2010), the concentric ring method (Oteros et al.,
2015) or footprint modelling - backwards modelling using tools such
as the atmospheric particle dispersion model HYSPLIT (Stein et al.,
2015) or SILAM (e.g. Hernandez-Ceballos et al., 2014). The abundance
or infestation level found at the combined set of stations is then interpo-
lated to the entiremodel domain. This implicitly assumes that the infes-
tation level of the plant in nearby habitats is similar and that a suitable
Table 1
CORINE land cover types withmajor ragweed infestation in the six regions in Europe described

CLC
code

CORINE land cover classifications (label 3) currently
considered to be major ragweed habitats
within Europe (n = 19)

Major rag
habitats
Austria (E
West
combined
17)

1.1.2 Discontinuous urban fabric Yes
1.2.1 Industrial commercial units Yes
1.2.2 Road and rail networks and associated land Yes
1.2.3 Port areas Yes
1.2.4 Airports Yes
1.3.1 Mineral extraction sites Yes
1.3.2 Dump sites Yes
1.3.3 Construction sites Yes
1.4.1 Green urban areas Yes
2.1.1 Non-irrigated arable land Yes
2.1.2 Permanently irrigated land Yes
2.2.1 Vineyards Yes
2.2.2 Fruit trees and berry plantations Yes
2.3.1 Pastures Yes
2.4.1 Annual crops associated with permanent crops No
2.4.2 Complex cultivation patterns Yes
2.4.3 Land principally occupied by agriculture, with significant areas of

natural vegetation
Yes

2.4.4 Agro-forestry areas No
3.2.1 Natural grassland Yes
approach to estimate the abundance in regions without observations is
to combine the presence of habitats with the abundance of pollen from
the nearest observational points.
2.1.1. Inventories of infested habitats
We generated inventories showing the distribution of ragweed

abundances in Europe using a combination of airborne pollen data and
land cover types identified as having the potential for ragweed invasion
– a so called infested habitat approach (Karrer et al., 2015; Skjøth et al.,
2010). Experts were consulted about which land cover types (habitats)
have the potential to be infested by common ragweed in different areas.
This allowed the abundance of habitats that could be infested in a
in this study. Suitable habitats are marked with YES and less suitable are markedwith No.

weed

ast &

) (n =

Major
ragweed
habitats
France
(n = 13)

Major
ragweed
habitats
Italy
(n = 11)

Major
ragweed
habitats
Pannonian
Plain
(n = 7)

Major
ragweed
habitats
Czech
Republic (n =
6)

Major
ragweed
habitats rest
of
Europe (n =
4)

Yes Yes No Yes Yes
Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes
No No No Yes Yes
Yes No Yes No No
No No No No No
No No No No No
Yes Yes Yes Yes No
Yes Yes No No No
Yes Yes Yes Yes No
Yes Yes No No No
Yes No No No No
Yes No No No No
No No No No No
Yes Yes No No No
Yes Yes Yes No No
Yes Yes Yes No No

No Yes No No No
No No No No No
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specific region to be calculated. The degree of infestation was then de-
termined by the use of pollen data.

The combined region under investigation included Europe and parts
of western Asia (Fig. 2A), which is termed ‘Europe’ for the purposes of
this study. Two land cover datasets were used with high spatial resolu-
tion: (1) The Corine LandCover (CLC) 2012version,which encompasses
the European Union and selected associated countries (Commission,
2005), and includes countries such as Norway, Switzerland, Serbia and
Turkey with a grid resolution of 100 m; (2) Globcover (Bicheron et al.,
2008), a global land cover dataset that has a coarser resolution
(300 m), fewer land cover classes and less detail with respect to man-
agement than the CLC dataset, but that allowed us to analyse important
ragweed areas like Ukraine and Russia.

The infestation of suitable habitats by common ragweed is favoured
by soil disturbance and can either be enhanced or suppressed by na-
tional agricultural schemes and local management of the agricultural
landscape and transport networks (Skjøth et al., 2010). The invasion
of common ragweed is ongoing and the plant has yet to colonise all
favourable habitats in the studied region, e.g. Austria (Karrer et al.,
2015) and Turkey (Onen et al., 2014). The CLC dataset was therefore
separated into regions (at NUTS1 and NUTS2 levels) and each region
was given its own set of land cover classes following Karrer et al.
(2015). These regions that, according to current scientific knowledge,
might be infested by common ragweed (Table 1) include: the
Pannonian Plain (Skjøth et al., 2010), which we have extended to
cover the Balkan region and parts of Turkey (Onen et al., 2014);
Austria/Switzerland (Karrer et al., 2015); parts of Italy (Bonini et al.,
2017; Celesti-Grapow et al., 2009; Gentili et al., 2017); France
(Thibaudon et al., 2014); Czech Republic (Skálová et al., 2017); North-
ern and Southern Europe. Note that we assume that the main infesta-
tion of common ragweed in Northern and Southern Europe is in the
)a

Fig. 2. A: Geographical regions with different invasion levels of common ragweed in describe
following six zones as described in Table A1: (1) The Pannonian Plain extended to cover part
(4) Czech Republic, (5) Parts of Italy and (6) areas with limited invasion and mainly in the urb
is separated into two regions with ragweed invasion found in the rural landscape covering ma
be found in the urban landscape. B: Pollen-monitoring sites included in this study with a defin
urban zone (McInnes et al., 2017; Sommer et al., 2015), an assumption
supported by the fact that most observations of common ragweed in
these areas have been associated with built environments (Sommer
et al., 2015).

The Globcover dataset was used outside the CLC region and sepa-
rated into two regions in the studied area: South and North (Fig. 2A).
According to the Interactive Agricultural Ecological Atlas of Russia and
neighbouring countries, common ragweed is found abundantly in
southern Russia, Georgia and parts of Ukraine (Afonin et al., 2008). To
the East, this information is limited as Kazakhstan was not covered by
the Russian Atlas. The northern region covers Belarus, the northern
parts of Ukraine and central and northern Russia. In this northern
Globcover region, the urban zone (ID = 190) was considered the only
habitat for common ragweed. In the southern region, the main agricul-
tural land cover classes (ID = 11,14,20,30) and the urban zone were
considered to be the only habitats for common ragweed following
Afonin et al. (2008). The completed Globcover dataset was reprojected
and re-gridded to 100 m × 100 m and combined with the CLC dataset.

As with previous studies (Bonini et al., 2017; Karrer et al., 2015;
Thibaudon et al., 2014), an elevation filter was used because common
ragweed is known to mainly occupy lowlands and permanent popula-
tions are only found below the climatological limit favouring the plant's
growth (Essl et al., 2009; Karrer et al., 2015). Studies have shown that
this climatological limit, where ~99% of stable populations are found
below, ranges from 439 m a.s.l. in France (Thibaudon et al., 2014) to
745 m a.s.l. in the Alpine region of Austria (Karrer et al., 2015). Casual
populations of common ragweed have been identified up to 1100 m a.
s.l. in Europe (Essl et al., 2009), but practically no Ambrosia pollen is ob-
served above 1000m (Matyasovszky et al., 2018). Although it should be
noted that Gentili et al. (2017) observed the plant growing up to
1834 m a.s.l. in Italy. In this study, the altitudinal limit of 745 m was
)b(

d land cover classes within the Corine Land Cover (CLC) classification separated into the
of the Balkans and parts of Turkey, (2) France, (3) Austria extended to cover Switzerland,
an zone (Sommer et al., 2015; McInnes et al., 2017). The coarser Globcover classification
inly Ukraine and southern Russia and northern parts where ragweed is only expected to
ed pollen integral and additional sites with no records of ragweed pollen.
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chosen as a general filter for Europe, except for France where the more
restrictive 439m filter was used due to the lower infestation in elevated
terrain (Thibaudon et al., 2014).

The elevation filter is based on two datasets in order to cover all of
Europe with sufficient accuracy. The first is the global void filled dataset
from the NASA Shuttle Radar Topographic Mission (Reuter et al., 2007)
that was made available at 90 m resolution up to 60 degrees North
(Jarvis et al., 2008). The second, which we used beyond 60 degrees
North, is the 225 m dataset from USGS named the Global Multi-
resolution Terrain Elevation Data 2010 (Danielson and Gesch, 2011).
Both datasets were reprojected and re-gridded to 100m grid resolution
defined by the CLC dataset. The elevation filter was applied on the com-
bined land cover data set with ragweed habitats and this final dataset
was re-gridded to 1 km for further manipulation including the applica-
tion of pollen data.

2.1.2. Pollen data and calculation of infestation level
Pollen data (2004–2012) obtained from published work were in-

cluded in the study (Fig. 2B). An additional ±2 years was allowed to en-
sure that sufficient data points in the vicinity of themain invasion fronts
of common ragweedwere included, covering regions like Spain, the UK,
parts of France, North Western Europe and Northern Russia. The pub-
lished work contained pollen data collected using optical methods for
identification and enumeration and displayed with well-defined pollen
integrals according to Galán et al. (2017). Ambrosia pollen data obtained
using this approachmay include pollen from several species of ragweed
that are present on the European continent, while common ragweed is
the most widespread of all species (Smith et al., 2013).

The pollen data encompass all the main centres in Europe infested
by common ragweed, i.e. Italy (Bonini et al., 2017), Austria (Karrer
et al., 2015), the Pannonian Plain (Skjøth et al., 2010), France
(Thibaudon et al., 2014) and parts of Ukraine. Additional published
data from 18 countries were included from a European-wide trend
study concerning Ambrosia pollen (Sikoparija et al., 2017). Further
data were included from studies conducted in Germany (Buters et al.,
2015; Höflich et al., 2016; Melgar et al., 2012), Croatia (Bokan et al.,
2007; Liu et al., 2016; Menut et al., 2014; Peternel et al., 2006; Puljak
et al., 2016), Turkey (Acar et al., 2017; Altintaş et al., 2004; Bicakci and
Tosunoglu, 2015; Tosunoglu and Bicakci, 2015), Romania (Leru et al.,
2018), Russia (Severova et al., 2015; Shamgunova and Zaklyakova,
2011), Serbia (Josipović and Ljubičić, 2012), Ukraine (Maleeva and
Prikhodko, 2017; Rodinkova, 2013; Turos et al., 2009), Bosnia (Turos
et al., 2009) and Slovakia (Hrabovský et al., 2016). All these sites are lo-
cated within urban zones and data are collected from the top of a build-
ing, typically 10 m–20 m above ground level.

Additional calibration points outside the main centres for common
ragweed were obtained by conducting a literature review of published
studies (e.g. pollen calendars) during the selected time period taking
into account both rural and urban locations. This was used to document
theminimal presence or absence of airborne Ambrosia pollen as an indi-
cation of the current invasion front. Studies were included when they
either reported full pollen calendars without ragweed, thereby
documenting low or no occurrence of Ambrosia pollen or specific num-
bers with respect to low amounts of ragweed pollen. This literature re-
view, as well as the main data collection of pollen integrals, took into
account both English and non-English literature found within the
study region such as Norwegian, Serbian and Russian. This provided
data of limited or no presence of airborne Ambrosia pollen from the fol-
lowing regions: Porto, Portugal (Ribeiro and Abreu, 2014), Funchal,
Portugal (Camacho, 2015), Toledo, Spain (Garcia-Mozo et al., 2006;
Perez-Badia et al., 2010) Badajoz, Spain (Gonzalo-Garijo et al., 2006),
Salamanca, Spain (Rodríguez-de la Cruz et al., 2010), Nerja, Spain
(Docampo et al., 2007), Moscow, Russia (Volkova et al., 2016), Mornag,
Tunisia (Hadj Hamda et al., 2017), Nicosia, Cyprus (Gucel et al., 2013),
Bodrum, Turkey (Tosunoglu and Bicakci, 2015), Konya, Turkey
(Kizilpinar et al., 2012), Kastamonu, Turkey (Çeter et al., 2012), Denizli,
Turkey (Güvensen et al., 2013), Van, Turkey (Bicakci et al., 2017), Hatay,
Turkey (Tosunoglu et al., 2018), Perm, Russia (Novoselova andMinaeva,
2015), 12 sites from Norway (e.g. Bicakci et al., 2017; Tosunoglu et al.,
2018) Finland (Manninen et al., 2014) and 5 sites from central/northern
Russia that documented no Ambrosia pollen deposition from the air
(Nosova et al., 2015).

Note that the data from the Norwegian, Spanish, Turkish and Cyprus
networks needed special treatment. Common ragweed is sparse in
these regions and inmost casesAmbrosiapollen – if present– is grouped
together with pollen from other members of the Asteraceae family. If
the annual pollen integral from the Asteraceae group was near zero
then data from these sites were included as being without presence of
Ambrosia pollen. Pollen stations with a low Asteraceae pollen integral
during the ragweed flowering period were also included, while stations
with a large Asteraceae pollen integral were excluded from the study.

The number of ragweed habitats for each grid cell within a 30 km ra-
dius of the pollenmonitoring sitewas calculated using the function focal
statistics provided with Spatial Analyst Tools, which is an extension to
ArcGIS. These values (henceforth amount of habitats) were then ex-
tracted for the pollen monitoring sites. This is done simultaneously for
all sites using the function Extract values to point also found within Spa-
tial Analyst Tools. This approach by combining tools within Spatial Ana-
lyst Tools has shown to be much more computationally efficient for
continental scale calculations as compared to previous approaches
that have mainly been applied at the country level (Bonini et al., 2017;
Karrer et al., 2015). This previous approach handled the sites individu-
ally and operated with the data in shape-file format (Skjøth et al.,
2010; Thibaudon et al., 2014). The ragweed infestation level is then cal-
culated at each site according to Thibaudon et al. (2014) and interpo-
lated to the entire area of investigation, where the infestation level
varies from 0% to 100%. The final gridded ragweed inventory was calcu-
lated at 1 km grid resolution by multiplying the gridded habitat map
with the calculated infestation level. The 1 km grid was aggregated to
10 km (Fig. 3A) for comparison with plant density data. The sensitivity
of the gridded data was tested by cross validation and displayed as a
scatter plot (Fig. 3B) and geographically on a map (Fig. 3C) according
to the recommendations by US-EPA (US-EPA, 2004). The 10 km inven-
tory is discussed at the European level, while the higher detailed 1 km
inventory is explored for selected areas and compared with the 10 km
inventory (Fig. 4A to D). Both European inventories given with the
10 km and the 1 km grid are provided as supplementary information
in form of tif files, which enables easy application of the data by author-
ities, forecasters and other users.
2.2. Inventories of plant density for Austria and Serbia and their comparison
with the pollen-based inventory

Two plant density maps were produced for Austria (Karrer et al.,
2015) and Serbia (Vrbničanin et al., 2008) based on unified nation-
wide observation campaigns on the presence, absence and abundance
classes of common ragweed for the same period as the pollen data (pre-
vious section). These data included areas with both widespread infesta-
tions of permanent populations of common ragweed and areas where
the plant was absent. The data fromVrbničanin et al. (2008)were deliv-
ered as a 3-level categorical dataset of infestation of common ragweed
with 10 km × 10 km resolution covering all of Serbia. The data from
Austria were raw observational values of the presence/absence of com-
mon ragweed (Karrer et al., 2015). The datasets were converted into
point-based shape files by calculating presence/absence on a 10 km
× 10 km grid covering both countries. The density of presence (grid
points) within a 30 km zone is then calculated for both Austria and
Serbia at a 10 km resolution, i.e. the same distance and resolution
used for the pollen based inventory. This enabled the data to be gridded
in the same way as the pollen based inventory. The plant density maps
were combined for both countries (Fig. 5A) and individual numbers in



Fig. 3. A: Infestation [%] of Ambrosia in Europe combining airborne Ambrosiapollen datawith land cover and elevation filter, aggregated to 10 km×10 km. B: Cross validation at each point
using the geographical distribution. C: Scatter plot showing cross validation results incorporating all sites in the study.
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the grid cells were directly compared using linear correlation analysis
(Fig. 5B).
3. Results

3.1. The pollen based ragweed inventory and its accuracy assessment

A total of 349 pollen monitoring sites were included in the study
(Fig. 2B). A high density of stations was found in Italy, France and
Hungary while a low density of stations was found in Romania, Molda-
via parts of Russia and Turkey. The geographical locations and the over-
all pollen integral used in the calculation were stored within a point-
based shapefile that also includes metadata with a citation for each
dataset. This shapefile is available as supplementary information. The
Rhône Valley, Northern Italy, the Pannonian Plain, parts of Turkey,
most of Ukraine, and parts of Russia were found to be the main areas
with high pollen integrals. The highest ragweed infestation was found
in Ukraine followed by Russia and the Pannonian Plain, which
corresponded well with the highest pollen integrals that were found
in Russia, Ukraine and Croatia. These areas (Fig. 3A) also contained the
main invasion fronts towards the North (e.g. Poland, parts of Russia
and Ukraine), while the southern invasion fronts were found in
Turkey near the Black Sea coast, parts of Italy and parts of France.

Cross validation provided an overall R2 value of 0.49 (Fig. 3B) and a
correlation of 0.74 and RMSE of 10.2%. The mapping of the absolute
error (Fig. 3C) revealed that nearly all sites had an absolute error of
b20%, while a few had much larger errors. These uncertainties were
mainly related to areas with low densities of stations such as part of
Ukraine, or near invasion fronts like the transition from thewestern Bal-
kans to the Adriatic coastline. The 10 kmgridded dataset highlights well
known areas of infestation such as the Rhône Valley in France (Fig. 4A)
and parts of Ukraine and Turkey (Fig. 4C) along the Black Sea coast.
More detail can be seen with the 1 km grid resolution, which displays
narrow areas with a high infestation in Italy and France (Fig. 4B) and
is associated with narrow valleys found near Roussillon, France, and
part of the Alpine region in either southern Switzerland and northern
Italy. The 1 km inventory is also highly detailed around the Black Sea
(Fig. 4D). The most highly infested areas in Russia and Ukraine are ar-
ranged in an arc around the northern coast of the Black Sea (Fig. 4D),
corresponding to the location of Odessa. This is a combined effect of ho-
mogeneous terrain with a very high density of agricultural land, i.e. a
large number of potential ragweed habitats and a lower density of pol-
len stations compared to areas such as the Rhône Valley in France. This
is also the area with the highest uncertainty according to the cross cor-
relation analysis.
3.2. The plant based inventory of common ragweed and its comparisonwith
the pollen inventory

The re-calculated plant-based inventory for Serbia (Fig. 5A) iden-
tifies the northern part as being heavily infested, while the southern
part contains notably less common ragweed. Similarly, the Austrian
plant-based inventory shows high infestations around Vienna
(Fig. 5A) and in the lowlands of the southern and eastern parts. Local-
ised infestations, apparently in relation to major road networks
expanding from the East to theWest, are consistent with previous find-
ings by Essl et al. (2009) and Vitalos and Karrer (2009). A substantial
fraction of the country has low infestations coinciding with the Alpine
region. The numerical comparison of the bottom-up plant-based inven-
tory with the top-down pollen-based inventory provided a highly sig-
nificant relationship (r2 = 0.64 P b 0.001) (Fig. 5B).
4. Discussion

This study provides, to our knowledge, the first complete inventory
of flowering ragweed all over Europe and western Asia showing both
distribution and relative abundance. The inventory has been validated
using both cross validation and two plant-based inventories for
Austria and Serbia. The inventory substantially expands current
methods used for developing top-down based inventories and provides
an approach that is generally applicable both for ragweed as well as
other anemophilous species. The new approach is demonstrably suit-
able across continents and due to its design it can at the same time in-
corporate several types of geographical data with varying detail along
with other types of information. The new approach is, therefore, both
flexible and made for either local or global implementation. The results
show large variations in infestation levels throughout the European
landscape – variations that, as far as we know, have not previously
been identified. These variations are in part related to the regional dis-
tribution of ecosystems likely to be affected and partly associated with
factors, such as steep terrain or specific agricultural management
schemes, that suppress the level of ragweed invasion.

The inventory is a major synthesis from COST Action FA1203-
SMARTER for the “Sustainable management of Ambrosia artemisiifolia
in Europe” (Müller-Schärer et al., 2018); a large EU-funded network
that operated from 2012 to 2016 with N250 active scientists from over
30 countries (Müller-Schärer et al., 2018). The data collected within
SMARTER is, to the best of our knowledge, the largest amount of Ambro-
siapollen data ever collected. The dataset includes information fromEn-
glish and non-English sources, thereby documenting ragweed
infestations from regions not previously considered. The map of
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Fig. 4. A: Infestation level of Ambrosia pollen covering the Rhone valley and the Milan region at 10 km × 10 km. B: Infestation level of Ambrosia pollen covering the Rhone valley and the
Milan region at 1 km× 1 km. C: Infestation level of Ambrosia pollen covering part of the Black Sea region and the coastal areas of Turkey, Bulgaria, Ukraine and Russia at 10 km× 10 km.D:
1 km × 1 km. Note the slightly different legends between 1 km and 10 km grid resolution.
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ragweed abundance is also based on expert opinion, observations of
plant abundances on the ground, and a mathematical approach for
connecting and analysing the data. As such, this synthesis is arguably
the most comprehensive and rigorous analysis of ragweed distribution
and abundance ever considered for Europe.

The approach for generating these maps is applicable for other ane-
mophilous plant species that release pollen to the air, to other periods of
sampling, and other regions with different land cover types. The ap-
proach is not restricted to the use of pollen data analysed with optical
microscopes, but can easily be applied to pollen data analysed withmo-
lecular techniques, thereby expanding the usefulness. Molecular ap-
proaches as well as approaches using optical microscopes, can provide
volumetric measures of pollen that are in fact directly comparable
(Müller-Germann et al., 2015). For instance, pollen and fungal pores col-
lected with traps of the Hirst design (Hirst, 1952), which are used by
many national networks, have been analysed using molecular
approaches to produce time series of volumetric measures (Grinn-
Gofroń et al., 2016; Núñez et al., 2017). In fact, nationwide monitoring
for airborne grass pollen using molecular approaches has recently
been demonstrated (Brennan et al., 2019). As such it is possible to calcu-
late the pollen or spore integrals (Galán et al., 2017) using molecular
techniques if the study involves standard or calibration curves (e.g.
Müller-Germann et al., 2015). Furthermore, the dataset can cover full
seasons, which is the main requirement when using molecular data
for this mapping approach. The traditional analysis of aerobiological
samples by an opticalmicroscope is often limited in its ability to identify
airborne pollen because pollen or fungal spores are aggregated into
groups such as genus (e.g. Betula), family (e.g. Asteraceae) or even
‘type’ (e.g. Taxus-Cupressaceae type). On the other hand, molecular ap-
proaches can identify pollen or spores that are morphological identical
to other species when analysed with a microscope such as the pollen
from different members of the Poaceae family (Brennan et al., 2019;
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Kraaijeveld et al., 2015), spores from the genus Cladosporium (Pashley
et al., 2012) or pollen from Ambrosia artemisiifolia (Müller-Germann
et al., 2017). The use of primers that either separate individual ragweed
species or target individual species such as Ambrosia artemisiifolia
(Müller-Germann et al., 2017) will provide substantial new insight
into species diversity in the air and allow for studies into ecosystem be-
haviour or provide background data for management. These diagnostic
methods would be particularly powerful when analysed spatially using
the approach presented here. Pollen data are relatively simple to collect
and so this approach is especially useful when the species under inves-
tigation are difficult and costly tomap at larger spatial scales using other
methods such as vegetation surveys or remote sensing (e.g. the global
invader Parthenium hysterophorus or the highly allergenic species of
Parietaria judaica). The background data and the final output data
from this study are available in a well-established digitized form at sev-
eral geographical resolutions (e.g. Fig. 4B and D). The inventory can,
therefore, be easily updated and the data are available for planningmit-
igation strategies, scenario studies, and forecasting; including use by the
atmospheric models used in the EU flagship Copernicus Programme.
This enables substantial impact within and outside academia – a pri-
mary objective of the SMARTER network (Müller-Schärer et al., 2018).

The inventory presented here, thanks to the development of new
methods, provides a substantial new understanding of the level of rag-
weed invasion across Europe that has not previously been identified.
The inclusion of new regions, e.g. Turkey, provides a larger geographical
coverage of ragweed infestation than previous studies conducted by
Bullock et al. (2010), Prank et al. (2013) and Liu et al. (2016). Our inven-
tory also shows much lower infestation levels in much of Northern
Europe than these other studies, e.g. for northern Germany, Denmark,
Belarus, the Baltic countries, Poland and Sweden. This is because the in-
ventory reflects the fact that common ragweed ismainly foundnear set-
tlements and that many regions in these countries are still free from
common ragweed (Afonin et al., 2008; Grewling et al., 2016; McInnes
et al., 2017; Sommer et al., 2015). The results suggest substantial spatial
variations in infestation levels in key areas such as the Pannonian Plain
and in countries like Italy. Our inventory shows almost no infestation in
large parts of Italy and, as such, is in agreement with national assess-
ments conducted by Celesti-Grapow et al. (2009) and Gentili et al.
(2017). Attempts of ecosystem modelling conducted by Chapman
et al. (2014) and Storkey et al. (2014) have some similarities with this
study (e.g. in Russia and Ukraine), but also contain major differences
in Northern countries (e.g. the UK, Germany and Denmark) as well as
countries near to or on the Pannonian Plain (e.g. Romania, Bulgaria
and the European part of Turkey). In our inventory, ragweed is hardly
present in the Northern countries (McInnes et al., 2017), has either
widespread but regional presence or patchy distribution in countries
such as France and Germany (Buters et al., 2015; Zink et al., 2012),
and is found abundantly in the European part of Turkey (Ozaslan
et al., 2016) and along parts of the Black Sea coast (Onen et al., 2014).
The approach implicitly assumes that each region with considerable
and consistent amounts of ragweed pollen is predominantly influenced
by local plants and that atmospheric processes keeping pollen airborne
have similar effects throughout the model area. This is not necessarily
the case, where a good example that can affect pollen dispersion is the
height of the planetary boundary layer (Smith et al., 2008; de Weger
et al., 2016). It has been shown that one of the important ragweed re-
gions during the main ragweed season systematically contain higher
planetary boundary layers compared to other European regions
(Seidel et al., 2012). Nevertheless, the harmonised inventory presented
in this study appears to agree considerably better with existing litera-
ture than large scale maps created in previous studies. This, combined
with the cross validation and comparison with plant-based inventories,
suggests that the approach presented in this study provides high quality
inventories from a statistical point of view and is currently the most
comprehensive method for estimating ragweed abundance throughout
Europe.

5. Conclusion

In summary, the map of ragweed abundance presented here is, to
our knowledge, the first complete assessment of ragweed invasion in
Europe. Common ragweed is one of the most economically important
invasive species in Europe and so is considered a flagship species. Miti-
gation is therefore highly needed. Our inventory can support successful
mitigation strategies, both at national and international levels, such as
the use of biological control or the implementation of newmanagement
schemes. As such, the inventory would need to be updated whenmajor
changes are seen in the distribution, thereby underlining the impor-
tance of long time series from pollen monitoring stations. Furthermore,
the method produces superior results to other mapping approaches
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when used for pollen forecasting, where the objective is to enable hay
fever sufferers to either reduce pollen exposure during high magnitude
events or take medication. Finally, the mapping of ragweed in this way
can be used to document the effect of climate change on vegetation as
the northward expansion of common ragweed in Europe is currently
limited by cooler climates. A main challenge with the approach has
been in securing sufficient amounts of data on a continental scale and
finding amethod for handling regions with poorer data coverage. Over-
all, the approach shows the high value of pollen data, particularly when
the data are applied to large spatial scales and combined with detailed
land use maps and expert knowledge of plant distribution and ecology.
Consequently, the production of inventories can help convince policy
makers setting political and administrative actions against invasive spe-
cies such as common ragweed.
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