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Abstract

Signed networks can capture positive and negative relationships in a social net-
work. We assume that the network nodes are of two different types and link signs
correlate with the node types, which induces some patterns of structural balance.
Given a signed network and information on the type of some source nodes, we con-
sider an observer outside the network who attempts to judge the type of a given
target node. Computing the globally optimal belief by Bayes’ rule involves consid-
ering exponentially many states. We propose a much simpler heuristic that is based
on the shortest paths between source nodes and target nodes. Theoretically, this
heuristic is weakly better than another heuristic from the literature and it coincides
with the Bayesian rule when the shortest paths between the source nodes and a
target node are unique and non-overlapping. With simulations, we assess the ac-
curacy of the three rules and find that differences can be substantial. The shortest
path heuristic is better than the other heuristic in handling multiple source nodes,
even though it aggregates information suboptimally. The crucial network statistic
for accuracy is the average distance in a network.

Keywords: signed graphs, social networks, trust, structural balance, learning

1 Introduction

The extensive study of social networks across several disciplines has brought to light many
patterns of how people (or organizations) are related to each other. While in most studies
network ties are assumed to be positive, e.g. friendship; negative ties, e.g. hostility, also
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Figure 1: Example: A manger learns about qualities of a target employee t from observing
the positive and negative relations that this employee holds.

exist in many applications. Signed networks capture both positive and negative ties.1

When using network data, it may be crucial to consider the sign of a relation. Consider
the following example:

You are a manager in an organization and have to assess whether to promote
a certain candidate t that you do not know first-hand. Besides other data and
means of assessment, you do know two employees s1 and s2 who work in the
same unit as t. For instance, you think that s1 is someone who cooperates
well, while s2 is rather not cooperative (say s1 makes very constructive contri-
butions to work teams, while s2’s contributions are rather impeding progress).
Moreover, you know the relationship among employees, as illustrated in Fig-
ure 1. Now, the fact that candidate t holds a positive relation to the coopera-
tive employee s1 might yield a positive signal about the cooperativeness of t.
Moreover, this belief could be reinforced by t’s negative relation to employee
j, who is positively related to the non-cooperative employee s2. Finally, the
positive view might be somewhat challenged by the fact that candidate t holds
a positive relation with employee i, who is, in turn, negatively related to the
cooperative employee s1. Overall, the way candidate t is related to s1 and
s2 might be informative about his own cooperativeness, here yielding rather
positive signals. (This assessment would lead to quite different conclusions if,
for instance, employee j were to judge.)

1For instance, Harrigan et al. (2020) provide a long list of examples for negative ties and argue that
negative ties and signed networks are under-studied and have only recently received more attention.
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More generally, for agents (nodes) whose qualities the observer does not know first
hand, she can still try to infer them from other nodes and the link signs between them
of the network. This is particularly important for finding hidden qualities of agents like
trustworthiness, endurance, cooperativeness, honesty, compliance to norms, etc. There
are several applications with a similar characteristic: Networks among employees (as in
the example); inter-firm networks (e.g. which other small businesses to trust); criminal
networks (who collaborates with the mafia and who acts legal); friendship networks (e.g.
is someone a suitable roommate); two political camps (e.g. tell revolutionists from govern-
mentalists); alliances between countries (see e.g. Harary, 1961); networks of artists (e.g.
whether a certain book/film/song probably fits one’s taste). The fundamental assumption
is that link signs are related to the node type. The classic theory of structural balance
provides a foundation for this assumption (Cartwright and Harary, 1956).2 Harary et al.
(1953) show that a signed network is balanced if and only if it has a two-camp struc-
ture. The two-camp structure, which Harary calls “polarization” means that nodes can
be organized in two camps such that there are only positive links within each camp and
negative links across.

In this paper, we provide a model of learning from link signs. An observer is given a
signed network and information about the types of some source nodes. Assuming that the
sign of a link is related to node type, based on patterns of structural balance, the observer
tries to learn about the type of the target node. We denote by r (for link reliability) the
probability that a given link between two nodes of the same type is positive and that
given a link across different types is negative. Similarly, q (for signal quality) denotes
the probability that the signal about the type of a source node is correct. We explicitly
derive the globally optimal inference, which we call the Bayesian rule. This rule provides
a natural benchmark for how much there is to learn. Unfortunately, it is complicated to
apply, as it involves considering 2N states, namely all combinations of initial node types.
We propose a much simpler heuristic that is based on the shortest paths between source
nodes and target nodes. This shortest path rule considers just one shortest path between
a source node and a target node and uses the information of the link signs along this path
to judge the target node. For multiple source nodes it aggregates the information as if
the paths were non-overlapping.

We assess the accuracy of this shortest path rule in comparison to the Bayesian bench-
mark and to another heuristic, the random neighbor rule.3 We first derive explicitly how

2Basically, if a friend of a friend is my friend, this 3-cycle is consistent with balance, but if a friend
of a friend is my enemy, this 3-cycle is not consistent with balance. More generally and more formally, a
signed network is called balanced if for every cycle the number of negative links is even (Cartwright and
Harary, 1956).

3The random neighbor rule was introduced in Medo et al. (2020) to model a cognitively-simple opinion
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expected accuracy of the shortest path rule depends on link reliability r, on signal quality,
q, and on the distance between source and target node (Claim 3). As the main theoretical
result, we show that the three rules can be ordered in terms of expected accuracy: the
random neighbor rule is weakly dominated by the shortest path rule, which is weakly
dominated by the Bayesian rule (Proposition 1). Only in a small class of networks (that
includes trees), i.e. single source node with a unique path to a target node, the three
rules lead to the same judgment, which means that the shortest path rule and the ran-
dom neighbor rule are also optimal (Proposition 2). In a larger class of networks (that
contains the small class above) that can be described as a star-like structure with the
target node at the center, i.e. each source node has a unique path to target node that
is non-overlapping with the other paths, the shortest path rule is still optimal, but the
random neighbor rule is in general not (Claim 1). Without restriction to these classes,
i.e. in arbitrary connected networks, the shortest path rule is in general not optimal. The
reason is that it treats information of the source nodes as if there was a star-like structure
around the target node, as we illustrate with counter-examples. This behavioral mistake
is similar to known imperfection in belief formation, such as correlation neglect (Enke and
Zimmermann, 2019).

We use simulations to quantify the differences in accuracy between the three rules.
The simulations assess the accuracy for different levels of link sign reliability (r), for
different quality of initial signals about source nodes (q), for different network structures,
and for different sizes of the network. The simulation results show that differences can be
substantial. The shortest path rule is, in particular, better in handling multiple source
nodes than the random neighbor rule. The intuition is as follows: When there are more
source nodes, both rules benefit from shorter paths to the target node, but only the
shortest path rule aggregates information of multiple paths. Therefore, when increasing
the network size, i.e. the number of nodes in the network, and proportionally increasing
the number of source nodes, the accuracy of the shortest path rule can even increase. We
show that the crucial network statistic is the average distance. For large networks, the
heuristics fail to produce accurate results, except for the shortest path rule if the number
of source nodes grows with network size and link reliability r is large enough.

Our work is most strongly related to the work of Medo et al. (2020). They introduce
a model, that translates into ours, and show in particular that the random neighbor
rule fails for large networks. We contribute to this very young literature by introducing
another heuristic, the shortest path rule, and comparing both the shortest path rule and
the random neighbor rule to the theoretically optimal solution, the Bayesian rule.

formation process where each new opinion is decided strictly locally based on an already formed opinion
on a neighboring node.
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Our work is also related to the literature on signed network mining. While node
ranking and community detection are tasks that are also studied for signed networks,
this is rarely the case for the task of node classification (Tang et al., 2016b). Tang et al.
(2016a) provide a first framework for the classification of signed networks and have to
resort to algorithms that mostly ignore the negative links. In some sense, we also classify
nodes as the observer judges their type. We do not only provide a new algorithm that
classifies a target node into two types in signed networks, but also solve for the optimal
solution within the setting of our model. While node ranking in signed networks is a
different objective than classification, its algorithms can also be strongly related to our
work. For instance, in Ortega et al. (2012) prior information on which nodes to trust
and which nodes to distrust is combined with a PageRank-like propagation mechanism
over a signed network. There are clear differences between our work and this literature:
Instead of using a data-driven, e.g. machine learning approach, we study the theoretically
optimal solution and compare it to simpler heuristics. Our exercise sheds light on why
classification of node types works in certain settings and fails in others.

Research on signed networks has always had an emphasis on structural balance, which
is still true in recent contributions. Some recent studies measure the extent of structural
balance in real social networks and find mixed evidence (Leskovec et al., 2010; Lerner,
2016; Kirkley et al., 2019). Other recent studies address the dynamics of structural balance
and hence the formation of signed networks (Derr et al., 2018; Zhao et al., 2017; Rabbani
et al., 2019). These works relate to our paper in that more or less structurally balanced
societies are the basis of our model. Interestingly, Lerner (2016) argues that by counting
the occurrence of patterns that are consistent or inconsistent with structural balance, the
basic problem is that the presence of links and the link signs are mingled. He proposes that
“estimating the conditional [emphasis in the original source] probability of a tie having
a particular sign, given that there is a tie, is a more appropriate operationalization and
has a clearer interpretation.” In our model, we disentangle the two by assuming that only
link signs depend on node types, while the presence or absence of a link does not.

Finally, within the large literature about social learning and opinion dynamics in social
networks, a few papers consider signed networks (see Shi et al., 2019 for a review and, e.g.,
Li, 2021 for a recent piece of work). These models generalize the classic DeGroot model
to include negative links and study dynamics of opinions on a given topic when agents
interact repeatedly. Our work differs fundamentally as we consider an observer who forms
beliefs about a social network, instead of forming a belief by interacting within a social
network. An interesting analogy to this literature is that simple rules of learning that
ignore some complex aspects of the social network can be compared to the benchmark of
optimal Bayesian learning.
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Our results are important because they show when the two simple heuristics work and
when they fail. Beyond assessing the performance of different rules, they compare the
heuristics to the theoretically optimal rule and hence show why the heuristics sometimes
work and sometimes fail.

2 Model

We first define the set-up, then introduce the inference rules, and finally turn to the
outcome measures.

2.1 Set-Up

We construct a signed network as follows. Let (V,E) be a simple graph of N := |V |
vertices (or nodes) and with the set of edges (or links) E. The graph is assumed to be
connected.4 For each node i ∈ V , the type θi ∈ {−1,+1} is drawn independently at
random with equal probability such that P [θi = +1] = P [θi = −1] = 1

2 . A signed network
can be represented by a symmetric matrix R with Rij ∈ {−1, 0,+1}, where Rij = 0 if
there is no link between i and j. For each link (i, j) ∈ E, there is either a positive sign
Rij = +1 or a negative sign Rij = −1. The link signs are drawn independently and
conditionally on node types as follows: between nodes of the same type (different types)
the probability of a positive (negative) link sign is r ∈ (0.5, 1], i.e. for any link (i, j),
P [Rijθiθj = +1] = r.

Some nodes S ⊂ V are pre-determined as source nodes. For each source node i ∈ S,
the observer receives an independent signal σi ∈ {−1,+1} about its type. Each signal
correctly indicates the node type with probability q ∈ (0.5, 1], i.e. P [σiθi = +1] = q. We
collect all initial signals in a vector σ = (σ1, ..., σN), where σi ∈ {−1,+1} for i ∈ S, and
σi = 0 for i 6∈ S. Parameters r and q are referred to as link reliability and source signal
quality, respectively. We assumed r, q > 0.5 because the signed network contained no
information when either r or q were 0.5.

Given a signed network R and signals σ, an observer wants to judge the quality of
some target node t ∈ (V \ S). To this end, the observer might apply one of the following
three rules.

4For network terms that are standard in graph theory and network science (such as connected graph,
path, distance), we refer the reader to textbooks, e.g. Diestel (2017) and Jackson (2010).
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2.2 Three Inference Rules

Optimal Benchmark: The Bayesian Rule (Bayes). The Bayesian rule properly
takes into account all available information and forms the corresponding posterior be-
lief. Each state of the world is one combination of node types θ = (θ1, ..., θN) ∈ Θ =
{−1,+1}N . As θi ∈ {−1,+1} is binary, there are 2N states of the world. Since node
types are independently drawn with equal probability, the prior probability of each state
θ is the same, P [θ] = (1

2)N . The conditional probability that, given a true state θ, we
observe signals σ and link signs R is

P [σ,R|θ] = qz1(θ)(1− q)z2(θ)rz3(θ)(1− r)z4(θ),

where z1(θ) := #{i ∈ S|σiθi = +1} is the number of source nodes for which the signal is
correct; z2(θ) := #{i ∈ S|σiθi = −1} is the number of source nodes for which the signal is
wrong; z3(θ) := #{(i, j) ∈ E|Rijθiθj = +1} is the number of links for which the link sign
is according to the node types; and z4(θ) := #{(i, j) ∈ E|Rijθiθj = −1} is the number of
links for which the link sign is not according to the node types. Note that z1(θ)+z2(θ) =
NS, where NS := |S| is the number of source nodes; and z3(θ) + z4(θ) = |E|.

Bayes’ rule gives us the conditional probability that, given observations σ,R, the true
state of the world is θ:

P [θ|σ,R] = P [σ,R|θ] · P [θ]
P [σ,R] =

qz1(θ)(1− q)z2(θ)rz3(θ)(1− r)z4(θ) · (1
2)N∑

θ′∈Θ qz1(θ′)(1− q)z2(θ′)rz3(θ′)(1− r)z4(θ′) · (1
2)N . (1)

While the numerator uses the likelihood of a given state θ, the denominator uses all
possible states, θ′ ∈ Θ, to generate the probability of the actual observation σ,R. Note
that the terms (1

2)N cancel out.
Finally, the probability that target node t is of the positive type is the probability that

we are in a state of the world with θt = +1. Let Θ(t) be all 2N−1 states with θt = +1.
Then the posterior belief that target node t is of positive type, given observations σ,R,
is

bBayes(t) :=
∑

θ∈Θ(t)
P [θ|σ,R], (2)

where P [θ|σ,R] is given by Eq. (1).5

For an observer (who knows which model has produced σ,R and knows the values of
q and r), the Bayesian rule is the optimal way to process the available information. The
downside is that its application involves 2N states which makes its direct use prohibitively

5From the posterior belief, we can also derive the expected node type: E[θt|σ,R] = P [θt = +1|σ,R]×
1 + (1− P [θt = +1|σ,R])× (−1).
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computationally demanding. We apply the Bayesian rule theoretically and restrict simu-
lations with the Bayesian rule to N up to 20.6

A New Heuristic: The Shortest Path Rule (ShPath). Instead of going through
all complexities that the Bayesian rule necessitates, the observer might simply consider
how the target node is connected to a given source node by a shortest path. We propose
a new rule based on this idea. The shortest path rule is defined as follows:

1. Select one source node s ∈ S. Identify all shortest paths from the source node s to
the target node t and choose one at random. Label nodes on the path “s → t” by
n0, n1, . . . , nL where n0 := s, nL := t and L is the path length.

2. Compute the path orientation produced by both the signal and link signs along the
path

os→t := σs
L−1∏
m=0

Rnm,nm+1 . (3)

3. Compute the probability that the shortest path has an even number of errors (i.e.,
links whose sign does not match the node types)7

πs→t := rL +
(
L

2

)
rL−2(1− r)2 + · · · = 1

2
[
1 + (2r − 1)L

]
. (4)

4. Determine the belief derived from this path as

bs→t :=

qπs→t + (1− q)(1− πs→t) if os→t = +1,
1− qπs→t − (1− q)(1− πs→t) if os→t = −1.

(5)

We can interpret bs→t as the subjective probability that node t is of positive type,
as it can be derived from the path from s to t. Consider, for instance, the first case,
where the path’s orientation is positive, i.e. where os→t = +1. There the former term
is the probability that the source node signal is correct and the number of erroneous
links between s and t is even which together imply that os→t = θt. The latter term
in Eq. (5) is the probability that the source node signal is incorrect and the number
of erroneous links between s and t is odd, which again implies that os→t = θt.
Hence, both terms together yield the probability that the path orientation, which is

6Approximate schemes based on Markov Chain Monte Carlo (Brooks et al., 2011) could be developed
to be able to treat larger values of N .

7The closed-form expression is obtained by replacing the sum over even j with [r+ (1− r)]L/2 + [r−
(1− r)]L/2.
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positive, coincides with the type of the target node t. Analogously, the second case
yields the probability that the path orientation, which is negative, does not coincide
with the type of the target node.

5. Repeat steps 1–4 for all source nodes S. Compute the belief (i.e. subjective proba-
bility) that target node t is of positive type as

bShPath(t) :=
∏
s∈S bs→t∏

s∈S bs→t +∏
s∈S(1− bs→t)

, (6)

which aggregates beliefs bs→t from each path, as if they were containing independent
information. For one source node (NS = 1), we have bShPath(t) := bs→t as given by
Equation (5).

The application of this rule is actually quite simple. Suppose first that there is only
one source node, i.e. S = {s} and NS = 1. Then the path orientation os→t, which is
derived in step 2, already indicates the best guess about the target node’s type: A positive
(negative) path orientation leads to the best guess that the target node is rather of the
positive (negative) type. Steps 3 and 4 attach a probability to this guess. Equation (5) (in
step 4) accounts for the probability q that the source node’s signal is accurate. Finally, in
step 5 we obtain belief bShPath(t) := bs→t when there is only one source node. For multiple
source nodes the procedure is repeated for each source node. Equation (6) in step 5 then
aggregates information from all source nodes as if the shortest paths were independent.8

The shortest path rule is motivated by an observer who is less sophisticated than the
Bayesian observer. In particular, this observer ignores information from other shortest
paths (if multiple shortest paths exist between s and t), from other paths that are not
shortest, and the fact that the multiple shortest paths might be overlapping.9

A Known Heuristic: The Random Neighbor Rule (RNeighbor). In a recent
paper, Medo et al. (2020) introduced a closely-related framework and studied the random

8This formula weighs the likelihood that all beliefs are correct against the likelihood that all are correct
or all are wrong. For example, if one source node would lead to a belief of 0.8 and the other source node
to a belief of 0.6, then the belief from both source nodes is (0.8∗0.6)/[0.8∗0.6+(1−0.8)∗(1−0.6)] ≈ 0.857.
Several simple examples that illustrate the application of all three rules are presented in Sections 2.3 and
Appendix B.

9In spirit, this is similar to imperfections in belief formation and social learning. For instance, there
are several biases when people learn about probabilities (e.g. Benjamin, 2019); including correlation
neglect, i.e. assuming that signals are independent even if they are correlated (Enke and Zimmermann,
2019). Also non-Bayesian models of social learning (or opinion dynamics), are motivated by näıveté in
updating. For instance, (DeMarzo et al., 2003) justify the DeGroot model with “persuasion bias,” a
tendency to ignore that several pieces of information may be redundant, e.g. stemming from the same
source.
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neighbor rule.10 In the random neighbor rule, the observer uses signals on the source node
types to form opinions xi ∈ {−1,+1} for all other nodes. The opinion formation process
is step-wise:

1. Judge every source node s ∈ S according to its signal: xs = σs.

2. Choose node j to judge at random from all nodes that have not been judged yet. If
no neighbor of j has been judged yet, repeat the choice.

3. From the judged neighbors of node j, choose neighbor i at random. The judgment
of node j is then xj = xiRij.

4. If target node t has not been judged yet, continue at step 2. If the target node
has been judged, then we define the best guess about the target node’s type as
gRNeighbor(t) := xt.

There is a difference between the random neighbor rule and the two other rules, in
terms of the output. The Bayesian rule and the shortest path rule produce beliefs b(t)
that lie in the interval [0, 1] and express the observer’s subjective probability that the
target node is of the positive type θt = +1. The random neighbor rule makes a judgement
xt about the target node that is either +1 or −1 without attaching a level of confidence to
it, i.e. gRNeighbor(t) ∈ {−1, 1}. To allow for a fair comparison between the three rules, we
map each continuous belief b(t) ∈ [0, 1] into a “best guess” g(t) ∈ {−1,+1}. In particular,
let g(t) = +1 for b(t) > 0.5, g(t) = −1 for b(t) < 0.5. In the knife-edge case b(t) = 0.5,
the best guess is chosen from {−1,+1} at random, with equal probability.

2.3 Illustration of How the Rules are Applied

Before we systematically compare the three rules, let us first illustrate how they are
applied in two simple examples. Both examples are subgraphs of the signed network
among employees illustrated in Figure 1.11

Example 1 (A Triangle). Focus on the top part of Figure 1, i.e. on the subgraph V ′ =
{s1, i, t} with edges E ′ = {s1t, s1i, it}. The source node’s signal is σs1 = +1 and the link
signs are Rs1t = Rit = +1 and Rs1i = −1.

10Our model framework translates to theirs when we set link reliability r ≡ 1−β where β is their noise
parameter and fix signal quality to be q ≡ 1. The other rule studied in (Medo et al., 2020), the Majority
rule, is less prominent than the random neighbor rule, so we omit it from our analysis.

11More details about these two examples and a solution to the whole network among employees as
depicted in Figure 1 is provided in Appendix B.1.
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The Bayesian rule considers all 23 = 8 states of the world. For instance, state θ =
(θs1 , θi, θt) = (+1,+1,+1), in which all nodes are of positive type, would generate the
observations σ,R, with probability P [σ,R|θ] = qr2(1 − r), as the signal for s1 agrees
with its type and two out of three links agree with their node types. Bayes’ rule gives us
the conditional probability that, given observations σ,R, the underlying state is indeed
θ: P [θ|σ,R] = P [σ,R|θ] · P [θ]/P [σ,R] by Equation (1), which is a somewhat tedious
expression. With Equation (2) we finally receive the Bayesian posterior belief that target
node t is of positive type, given observations σ,R, and simplify it to

bBayes(t) = P [θt = +1|σ,R] = (1 + q)r2 + (1− q)(1− r)2

3r2 + (1− r)2 .

Next, let us apply the shortest path rule, again to the subgraph (V ′, E ′). The only
shortest path from source to target node is obviously s1, t and has length 1. The path’s
orientation is os1→t = σs1Rs1,t = (+1)×(+1) = 1, which already means that the best guess
is that the target node is rather of the positive type. The probability that the shortest path
has an even number of errors πs1→t = r by Equation 4. Hence, the belief derived from this
path by Equation (5) is bs1→t = qr+(1−q)(1−r), which does not change by Equation (6).

bShPath(t) = qr + (1− q)(1− r).

Finally, let us apply the random neighbor rule. In the first step, the judgment of source
node s1 is produced by its signal as xs1 = σs1 = +1. Now, a next node is chosen from {i, t}
at random. If this node is t, we receive the judgement xt = xs1Rs1t = (+1)× (+1) = +1
and we have the best guess gRNeighbor(t) = +1. Otherwise, i is judged next with xi =
xs1Rs1i = (+1) × (−1) = −1. Then the next node must be t. It is selected at random
whether the judgement on t comes from neighbor s1 or from neighbor i (who are both
already judged). In the former case we have xt = xs1 = 1; in the latter case we have xt =
xi = −1. Overall, we have a 3/4 chance to reach gRNeighbor(t) = +1 (when the judgement
about t is derived from s1 directly) and a 1/4 chance to reach gRNeighbor(t) = xi = −1
(when the judgement about t is derived from s1 via i).

Computing the beliefs in Example 1 yields 0.5 < bBayes(t) < bShPath(t). Hence, we can
observe that, in this example, the Bayesian rule and the shortest path rule lead to the same
best guess that the target node is of the positive type (gBayes(t) = gShPath(t) = +1). The
random neighbor rule agrees in most, but not all cases. Interestingly, the confidence level
of the Bayesian rule is lower than that of the shortest path rule, i.e. bBayes(t) < bShPath(t),
since it takes into account that besides the direct shortest path with a positive orientation,
there is a second path with a negative orientation. The next example shows how the rules
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are applied when there is a single longer path.

Example 2 (A Line). Focus now on the lower part of Figure 1, i.e. on the subgraph
V ′′ = {s2, j, t} with edges E ′′ = {s2j, jt}. The source node’s signal is σs2 = −1 and link
signs are Rs2j = +1 and Rjt = −1.

The Bayesian rule considers again 23 states of the world. It finally yields the belief

bBayes(t) = [qr2 + q(1− r)2 + 2(1− q)r(1− r)]/1 = 4qr2 − 4qr + 2r − 2r2 + q.

The shortest path from source to target node is clearly s2, j, t and has length 2. The
path’s orientation is positive as the negative signal for s2 and the negative link between j

and t offset each other: os2→t = σs2Rs2jRjt = (−1) × (+1) × (−1) = 1. The probability
that the shortest path has an even number of errors is πs2→t = r2 +(1−r)2 by Equation 4.
Hence, we receive the final belief

bShPath(t) = q[r2 + (1− r)2] + (1− q)[1− (r2 + (1− r)2)] = 4qr2 − 4qr + 2r − 2r2 + q.

The random neighbor rule starts with setting xs2 = σs2 = −1. Then it chooses a node
from {j, t} at random. If the node is t, it chooses again as the only neighbor of t, j, has not
been judged yet. If the node is j, it makes the judgement xj = xs2Rs2j = (−1)×(+1) = −1.
Finally, it judges node t as xt = xjRjt = (−1)× (−1) = +1. Hence, gRNeighbor(t) = +1.

Computing the beliefs in Example 2 yields 0.5 < bBayes(t) = bShPath(t), while gNeighbor(t) =
+1. This means first that all rules lead to the same best guess that the target node t
is rather of the positive type: gBayes(t) = gShPath(t) = gRNeighbor(t). And second that
the shortest path rule leads to exactly the same belief as the Bayesian rule and is hence
optimal. Both observations are not coincidences, as we prove in Claims 1 and 2 in the
next subsection.

3 Theoretical Results

3.1 Comparison of the Three Rules

The three seemingly very different rules are in fact strongly related to each other.

3.1.1 Comparison of Shortest Path Rule with Bayesian Rule

The example of a line graph above (Example 2) already indicates that sometimes the
shortest path rule leads to the same belief as the Bayesian rule. The first proposition
provides a sufficient condition for this conclusion.
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Figure 2: A star-like network with five source nodes (s1, . . . , s5) and subgraphs attached
to nodes s1, s3, and j3. As the path between each source node and target node t is unique
and does not overlap with other paths, the condition of Claim 1 holds. Hence, the shortest
path rule and the Bayesian rule yield identical beliefs about t (for any σ and R).

Claim 1 (Equivalence). Suppose that in (V,E) between each source node s ∈ S and the
target node t there is a unique path that is non-overlapping with the paths of the other
source nodes. Then the Bayesian rule and the shortest path rule are equivalent: for any
observation σ,R,

bBayes(t) = bShPath(t).

The condition of the result (unique path that is non-overlapping) is equivalent to the
following: Between every pair of source nodes, there is one single path and the target
node t lies on this path. Hence, these networks have a star-like structure, where target
node t is the center and each source node s is on a unique ray (of arbitrary length), plus
potentially subgraphs that are “pockets”, as illustrated in Figure 2.

Conversely, if these conditions (unique path that is non-overlapping) are not met, the
shortest path rule may be suboptimal. We demonstrate this by three examples which
are illustrated in Figure 3, and solved in Appendix B. For concreteness, we suppose in
all examples that the source node signals are positive. In Example B.1, illustrated in
Panel (A) of Figure 3, there is a unique shortest path between source node and target
node, but there are additional (non-shortest) paths. The shortest path rule only uses
the direct path, which has a positive orientation. However, the Bayesian rule uses all
information including the two paths of length 2, which are both negatively oriented.
Hence for r not too small, the best guess of the Bayesian rule is negative, while the
shortest path rule comes to the opposite conclusion.

In Example B.2, illustrated in Panel (B) of Figure 3, there are multiple shortest
paths between source node and target node. The Bayesian rule always leads to a belief
bBayes(t) > 0.5 and corresponding best guess of +1, as two out of three paths are positively
oriented. The shortest path rule selects one of the three shortest paths at random. Hence,

13



s

j1

j2

t s

j1

j2

j3

t

s1

s2

j t

(A) (B) (C)

Figure 3: Illustration of signed networks in Examples B.1-B.3. These networks do not
satisfy the condition of Claim 1 such that the shortest path rule leads to suboptimal
beliefs.

with probability 2/3 it selects a positively oriented path and induces a best guess of +1,
but with probability 1/3 it induces a best guess of −1.

Finally, in Example B.3, illustrated in Panel (C) of Figure 3, there are two source
nodes whose shortest paths to the target node overlap. For r, q ∈ (0.5, 1), we receive
bShPath(t) > bBayes(t). The suboptimality of the shortest path heuristic in this example
enters in step 5 of the procedure when multiple paths are aggregated. The shortest
path rule aggregates information of both paths as if they were independent, ignoring
that they are correlated by having link jt in common. This mistake is very similar in
spirit to persuasion bias in the DeGroot model (DeMarzo et al., 2003) and to correlation
neglect (Enke and Zimmermann, 2019). We observe that ignoring this overlap leads
to overconfidence, as the subjective probability is higher than the objective probability:
bShPath(t) > bBayes(t) > 0.5.12

As we can see in these three examples, the reason for potential suboptimality of the
shortest path rule is that it aggregates information from the signed network as if all paths
from any source node to the target node were unique and independent.

3.1.2 Comparison of Shortest Path Rule with Random Neighbor Rule

Recall that the random neighbor rule leads to a best guess gNeighbor(t) about the target
node’s type that can be compared to the corresponding best guess that is induced by the
shortest path rule gShPath(t). The line graph discussed as Example 2 already indicates
that the random neighbor rule can sometimes lead to the same best guess as the shortest
path rule. The next proposition provides a sufficient condition for this conclusion.

Claim 2 (Same Best Guess). Suppose that in (V,E) there is a unique path between
the only source node s and the target node t. Then for any observation σ,R, we have

12In larger examples (that can be requested from the authors) it may also lead to different best guesses.
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gShPath(t) = gRNeighbor(t).

For the interpretation of Claim 2 it is helpful to re-interpret the random neighbor rule
in terms of paths. When we apply the random neighbor rule using source node s, the final
judgment of node t is ultimately based on a random path between the source node and
the target node. This random path’s orientation os→t determines the best guess, similarly
to the shortest path rule, where the orientation of the shortest path determines the best
guess. Hence, when there is a unique path between s and t, then this path is also the
shortest path and the two rules lead to the same best guess.13

Conversely, when there are multiple paths between the single source node s and the
target node t; or when there is more than one source node, the random neighbor rule
does not always lead to the same best guess as the shortest path rule. For instance, in
Example 1, illustrated in the upper part of Figure 1, there are multiple paths and the
random neighbor rule may lead to a best guess of −1, while the shortest path rule leads
to +1. In Example B.3, illustrated in panel B of Figure 3, there are multiple paths of the
same length. It might happen that we have a negative signal for source node s1 and a
positive signal for s2 and that the random neighbor rule bases the judgement on the path
from s1, while the shortest path rule randomly selects the other shortest path.14

3.2 Comparison of Accuracy

We now theoretically assess to which extent the three rules deliver a correct judgment.

Definition 1 (Accuracy). Let g(t) be the observer’s best guess of type of node t obtained
using a certain rule, while true node types are θ.15 The rule’s accuracy for target node t
is defined to be 1 for a correct judgement and 0 for a wrong judgement:

A(t) =
{ 1 if g(t)θt = +1,

0 if g(t)θt = −1.

This definition allows us to assess the obtained opinion for any given realization of
node types, source signals, and link signs. However, such a realization is not necessar-

13Moreover, since the conditions of Claim 2 are stronger than those of Claim 1, it actually follows that
all three rules lead to the same best guess under the conditions of Claim 2, i.e. in the special case that
there is only one source node and a unique path between source node and target node. This insight will
lead to Proposition 2 below.

14However, in this network the two rules would lead to the same quality of judgment in expectations
– a topic that we address in the next subsection.

15Recall that for any belief b(t) > 0.5 the best guess is +1, for any belief b(t) < 0.5 the best guess is
−1, and for b(t) = 0.5 the best guess is chosen from {−1,+1} with equal probability.
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ily representative. To measure the performance of an inference rule, we thus assess its
expected accuracy.

Definition 2 (Expected Accuracy). Fix a network (V,E) with source nodes S and target
node t and also fix the model parameters q and r. A rule’s expected accuracy, E[A], is
the expected value of accuracy over all different realizations (states θ, signals σ and link
signs R) and all different judgment outcomes.16

Expected accuracy can be interpreted as the ex ante probability that the final judge-
ment of the target node will be correct. If our belief b(t) correctly reflects the proba-
bility that target node t is of the positive type, then E[A(t)] = b(t) if b(t) ≥ 0.5 and
E[A(t)] = 1− b(t) if b(t) < 0.5.

While expected accuracy E[A] can in principle lie anywhere in the range [0, 1], already
with random guessing of target node types, we achieve an expected accuracy of E[A] =
0.5.17 Hence, 0.5 is a lower bound on the performance of a sensible rule. At the other
extreme, expected accuracy of any rule is bounded from above by the initial information
given through the source nodes. For the case of one source node, NS = 1, we have
in particular that E[A] ≤ q for any rule; the equality is achieved when r = 1. The
generalization of this upper bound to multiple source nodes is straightforward: with NS

source nodes, the highest possible expected accuracy is achieved when r = 1 and it equals
the probability that the majority of NS signals is correct plus one half the probability
that there are equally many correct and false signals.

The newly defined expected accuracy allows us to understand how is the performance
of the shortest path rule affected by positions of source and target nodes in the network.

Claim 3 (Shortest Path Accuracy). Let NS = 1 and suppose that the shortest path between
source node s and target node t has length L. The expected accuracy of the shortest path
rule is then

E[AShPath] = 1
2 +

(
q − 1

2

)
(2r − 1)L. (7)

As os→t is the best guess of θt for the shortest path rule, the expected accuracy
introduced by Definition Eq. (2) is thus equal to P [os→t = θt]. This lemma then follows
by combining with Eqs. (4) and (5). The obtained expected accuracy depends on the

16The probabilistic element in the shortest path rule is which shortest path to use if there are multiple.
The probabilistic element in the random neighbor rule is the order of judgment. The Bayesian rule is
deterministic.

17In the work of Medo et al. (2020), a closely-related metric, opinion consistency, is used to assess the
opinions formed on several nodes. Since a simple linear relation exists between accuracy A(t) and node
t’s contribution to opinion consistency, C(t) = 2A(t)− 1, the results are qualitatively the same for both
of them.
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model parameters, q and r, and the shortest path length, L. When q = 0.5 (the source
signals are not informative) or r = 0.5 (the links are not informative), E[AShPath] = 0.5
for any shortest path length L. When r = 1 (fully reliable links), E[AShPath] = q for any
L. Finally, when q > 0.5 and 0.5 < r < 1 (the non-trivial case), E[AShPath] decreases as
L grows.

Note that Eq. (7) can be used to compute the expected accuracy of the random neigh-
bor rule. Using a path whose length L is greater than the shortest path length directly
results in a lower expected accuracy.

We are now in the position to state the main result. It establishes how the three rules
are ordered in terms of expected accuracy.

Proposition 1 (Ordering). For every given network (V,E), set of source nodes S and
target node t, the accuracy expectations of the three rules are ordered as

E[ABayes] ≥ E[AShPath] ≥ E[ARNeighbor].

The first inequality is a simple implication of the fact that the Bayesian rule computes
the correct posterior belief for any realization of source node signals σ, and link signs R.
When the observer uses this rule, then her belief (i.e. subjective probability) equals exactly
the objective probability that the target node t is of positive type. Hence, the expected
value of accuracy after realization of observations σ,R (we might call this “ad interim
expected accuracy”) is maximal. Since this holds for every realization of observations, also
the ex ante expected value of accuracy, that is expected accuracy E[ABayes], is maximal.

The comparison between shortest path rule and random neighbor rule is based on the
previously mentioned observation that the random neighbor rule effectively uses a random
path between some source node s and target node t. If this path is a shortest path, then
the shortest path might use the same path or another path of the same length. Both
would lead to the same expected accuracy when there are no other source nodes. If the
path used by the random neighbor rule is not a shortest path, then the shortest path rule’s
expected accuracy is weakly higher due to Eq. (7). If there are multiple source nodes, the
shortest path rule aggregates information obtained using shortest path from all source
nodes. For the random neighbor rule, the judgment of every target node can be traced
back to a path from a single source node and the information provided by other source
nodes is neglected. This further lowers the expected accuracy of the random neighbor
rule which is thus always weakly dominated by the shortest path rule in terms of expected
accuracy.

Taken together, the Bayesian rule weakly dominates the shortest path rule, which in
turn weakly dominates the random neighbor rule. To be clear, this does not mean that
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Figure 4: Illustration of Proposition 2. When there is a unique shortest path between
source node s and target node t, the three rules induce the same accuracy.

there are no instances, where a dominated rule is accurate and a undominated rule is not.
For instance, we can have, e.g., ARNeighbor = 1 while AShPath = 0 in some realization, but
in expectations the ordering E[AShPath] ≥ E[ARNeighbor] holds for any network.

Since Proposition 1 only establishes a weak dominance relation between the three
rules, the consequent question is when the three rules do not differ in accuracy. The next
result identifies a condition for all three rules to be equally accurate.

Proposition 2 (Unique Path). Let NS = 1. Suppose that in network (V,E) there is a
unique path between source node s and the target node t. Then all three rules (Bayes,
ShPath, RNeighbor) lead to the same expected accuracy:

E[ABayes] = E[AShPath] = E[ARNeighbor].

This proposition follows from the Claims 1 and 2, which establish when the shortest
path rule leads to the same belief as the Bayesian rule and when it leads to the same best
guess as the random neighbor rule. Indeed, the condition of Proposition 2, i.e., there is a
unique path between the only source node and the target node, is equal to the condition
of Claim 2, which is stronger than the condition of Claim 1. Hence, all three rules must
lead to the same best guess and hence to equal accuracy under this stronger condition. As
the three accuracy values are equal for each realization of states, signals, and link signs,
they are also equal on average.

The intuition for this result is illustrated by Figure 4. First, the existence of a unique
path from s to t implies that the network must look as shown in this figure, where
subgraphs are attached to individual nodes of the path. Second, these subgraphs do not
affect the inference of the three considered rules. Finally, all three rules lead to the same
best guess when only the path from s to t is considered.
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Proposition 2 shows that the three rules lead to the same accuracy when there is a
unique path between the only source node s and target node t. For instance, it implies
that this holds for the class of tree networks, as trees are characterized by a unique
path between any two nodes. Conversely, it turns out that if there are multiple paths
or if there are multiple source nodes, then the three rules’ expected accuracy does not
coincide, apart from special cases. This, opposite direction of the statement – the three
rules lead to the same expected accuracy only if there is a unique path between the single
source node and the target node – is intuitive when considering again that the random
neighbor rule effectively uses one random path from source node to target node. Any
additional path and any additional source node provides additional information that gives
the Bayesian rule an edge over the random neighbor rule. The shortest path partially uses
this additional information. Its accuracy benefits from any additional source node and also
from additional paths if they are shorter. The Bayesian rule has an edge over the shortest
path rule since it uses all paths between a given source node s and the target node t and
since it properly combines the information from multiple source nodes (taking into account
overlapping paths). However, this opposite direction of the statement does not hold in
general. For instance, if r = 0.5 or q = 0.5 (observations yield no useful information), the
expected accuracy of all rules is 0.5, independent of the network structure. And there are
examples with multiple source nodes, in which the three rules coincide even for non-trivial
values of r and q.18

In this section we have theoretically established the order of the three rules according
to expected accuracy. To quantify these differences between the three rules, we will now
turn to simulation results.

4 Simulation Results

We first define the simulation procedure.

4.1 Simulation Procedure

For each of the three rules (Bayesian rule, shortest path rule, random neighbor rule), the
simulations proceed as follows:

1. Generate a synthetic random network of a given class with N nodes and mean degree
z. If it is not connected, generate a new network. The classes of random networks

18For instance, in panel C of Figure 3, the two paths either have the same orientation such that the
best guess coincides for all three rules, or the paths have opposite orientations such that the probability
of an accurate judgment is one half for all three rules.
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that we use are: Erdös-Rényi random networks (ER), Regular random Graphs (RG),
Barabási-Albert scale-free networks (BA), and Watts-Strogatz small-world networks
(WS).19

2. Choose NS nodes at random to serve as the source nodes.

3. Draw node types, link signs, and source node signals according to the model intro-
duced in Section 2.1.

4. For each node that is not a source node, designate it as target node, apply a given
rule (Bayes, ShPath, or RNeighbor) according to Section 2.2, and measure its accu-
racy A.

5. Repeat the above steps 1, 000 times. From the obtained accuracy values, compute
mean accuracy, A, and the standard error of the mean (SEM), σA. (Figures reporting
simulation results depict the mean with error bars that are twice the SEM.)

We apply this procedure for various model parameters (q, r), network topologies, and
network sizes N .

4.2 Varying Signal Quality and Link Reliability

From the theoretical results we know the ordering of the three rules: E[ABayes] ≥
E[AShPath] ≥ E[ARNeighbor] (Proposition 1) and that they coincide in special cases (Propo-
sition 2). Let us now assess how large the difference between the three rules are. Figure 5
illustrates how accuracy depends on the applied rule for different levels of signal quality
q and link reliability r. The illustrated simulations use Erdös-Rényi random networks of
N = 20 nodes with mean degree z = 5. The left panels show results for NS = 1 source
node, the right panels for NS = 5 source nodes.

Clearly, accuracy of all rules is weakly increasing in signal quality and weakly increas-
ing in link reliability r. In the extreme case of r = 0.5, we have accuracy of random
guessing since the information about the source node(s) cannot be used to judge other
nodes when links are independent of type. The other extreme case of r = 1, leads to
relatively high accuracy and will be further discussed below. Most importantly, Figure 5
illustrates that for intermediate values of link reliability r, the rules significantly differ
in accuracy. For instance, in the top left panel at r = 0.8, accuracy of the Bayesian
rule (around 80%) is substantially higher than accuracy of the shortest path rule (around
70%), which in turn is substantially higher than accuracy of the random neighbor rule

19Further network generation details are provided in Appendix C.1.
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(slightly above 60%). Considering the other depicted settings of signal quality q and
number of source nodes NS, there are again levels of link reliability r with significant
differences between the three rules. Hence, we receive the following first result:

Result 1. Differences in accuracy between the three rules can be substantial.

Accuracy of all rules and hence also differences are smaller for low levels of signal
quality q and they would vanish when quality approaches q = 0.5. Similarly, differences
also vanish when link reliability approaches r = 0.5.

Let us now explore how the presence of multiple source nodes affects the comparison
of the three rules. The simulations indicate that the shortest path rule may be closer to
the random neighbor rule for one source node, but closer to the Bayesian rule when there
are multiple source nodes. Comparing the left and right panel of the figure reveals that
multiple source nodes improve accuracy of the Bayesian and the shortest path rule. For
the random neighbor rule, multiple source nodes do not substantially improve accuracy.
Recall that this rule effectively uses only one source node. Thus, multiple source nodes
do not help to aggregate information, but only to reduce the length of the used path, on
average. This disadvantage of the random neighbor rule can also be seen for the case of
perfectly reliable links, r = 1, and understood as follows.

In the extreme case of r = 1, the signed network has the two-camp structure such
that there are only positive links within camps and negative links across (Cartwright and
Harary, 1956). In other words, the network is socially balanced (Harary et al., 1953).
Hence, there are only two states of the world, which differ by which camp is of the
positive type. Source nodes provide information about the likelihood of these two states.
In particular, if there is only one source node (NS = 1), the expected accuracy of any of
the three rules is q. For more than one source node, the expected accuracy is higher for
the Bayesian and the shortest path rule, but not for the random neighbor rule. Accuracy
of the random neighbor rule stays at q, no matter how the number of source node changes.
This is the intuition for the second result:

Result 2. The difference in accuracy between the shortest path rule and the random
neighbor rule is particularly pronounced for multiple source nodes.

Moreover, we can observe Figure 5 that r is not an upper bound for expected accuracy
of the Bayesian rule. For instance at r = 0.9, the Bayesian rule’s expected accuracy is
larger than 0.9. The reason is that multiple paths with link reliability of r can yield
information that exceeds r. For the other two rules, the shortest path rule and the
random neighbor rule, link reliability r is in fact an upper bound for expected accuracy
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Figure 5: Mean accuracy of the three rules for different levels of link reliability r. Signal
quality is q = 1 (top row), q = 0.9 (middle row), q = 0.7 (bottom row). Results are for
Erdös-Rényi networks with N = 20, z = 5, NS = 1 (left) and NS = 5 (right). The error
bars show twice the standard error of the mean.
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when we have only one source node. The reason is that only one path is actually used
such that information of multiple paths from one source node are not aggregated by these
two rules (cf. Example 1).

4.3 Different Network Topologies

We now investigate how the network topology affects accuracy. First, we check whether
our simulation results are robust to changing the class of network. We have so far used
Erdös-Rényi (ER) random networks, now we consider three additional network classes:
regular graphs (RG), Barabási-Albert (BA) scale-free networks, and Watts-Strogatz small
world (WS) networks. These networks differ in several characteristics: shape of the degree
distribution (regular graphs have the most homogeneous degree distribution, BA networks
the most heterogeneous), clustering (WS networks have high clustering coefficient when
the rewiring probability is small), and the distances, as we will discuss.

Figure C.1 in Appendix C.2 re-examines the differences between the three rules of
Figure 5 when the Erdös-Renyi network generation process is replaced with RG, BA, and
WS. Indeed, the differences between the three rules are very similar for all topologies and
hence our two empirical results R1 and R2 (see Section 4.2) are robust.

Second, we address how two crucial features of a network structure – density and
distances – affect accuracy.

Concerning density, Figure 6 shows how expected accuracy in the three rules increases
with mean degree z. Intuitively, denser networks provide more information and shorter
paths, which should increase expected accuracy of all three rules. We see that this is
the case for the Bayesian rule and, to a lesser extent, for the shortest path rule. For
the random neighbor rule, however, the increase of expected accuracy is not significant
for NS = 5 and it saturates early (at z ≈ 4) for NS = 1. This agrees with the results
presented in Medo et al. (2020) where a weak dependence on z was observed too. Hence,
we conclude:

Result 3. Accuracy of the Bayesian and shortest path rule weakly improve with density
of a network.

Let us now address the effect of distances. To vary the distances, without changing
the density of a network, we use two ways. First, we vary the rewiring probability in the
WS networks, in which distances are decreasing in the rewiring probability. Second, we
study the different classes of networks – ER, RG, BA, WS – all for the same density and
measure the distances their realizations have. It turns out that our simulated networks
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Figure 6: Mean accuracy of the three rules for increasing mean degree z. Results are for
Erdös-Rényi networks with N = 20, z = 5, q = 0.9, r = 0.9, NS = 1 (left) and NS = 5
(right).

satisfy dBA < dER < dWS(β=0.5) ≈ dRG < dWS(β=0.1) (empirically determined shortest
lengths are 3.54 ± 0.03, 4.20 ± 0.03, 4.51 ± 0.02, 4.55 ± 0.01, and 6.85 ± 0.05, mean ±
twice the SEM, respectively) for N = 300 and z = 4 in Figure 7.

Figure 7 shows that the mean accuracy achieved by the shortest path rule is the
lowest for the WS networks with low rewiring probability, β = 0.1, where the average
shortest path length is considerably longer than in the other networks. By contrast, the
highest mean accuracy (for fixed link reliability, r) is achieved in BA networks where the
average shortest path length is the shortest. These observations agree with Claim 3 which
identifies the shortest path length as the key determinant of the expected accuracy for
the shortest path rule. These findings strongly suggest that the average path length of a
network is a key determinant for accuracy of the shortest path rule.

Result 4. The shorter the average distances in a network, the higher the accuracy of the
shortest path rule.

The same ordering of network topologies has been reported for the random neighbor
rule in Medo et al. (2020). Figure C.2 in Appendix C.2 shows similar results for the
Bayesian rule: Watts-Strogatz networks with β = 0.1 display the longest shortest paths
and the lowest mean accuracy. This suggests that the shortest path length is important
also for this optimal rule.

4.4 Increasing the Network Size

We finally analyze how results scale when network size N becomes larger. To focus on the
effect of growing network size only, we keep mean degree fixed. We consider two settings.
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Figure 7: Accuracy of the shortest path rule for various classes of random networks and
different levels of link reliability r. Results are for N = 300, z = 4, q = 0.9, NS = 1 (left)
and NS = 5 (right).

Either the number of source nodes is kept constant or it grows proportionally to network
size N . The dependence of the accuracy on the network size has been a major topic
in Medo et al. (2020). They show that the random neighbor rule’s expected accuracy
slowly converges to 0.5 (equivalently, in their terms the rule’s consistency convergences
to 0) as N grows when the number of source nodes is constant. When NS ∼ N , the
expected accuracy of the random neighbor rule quickly approaches a limit value greater
than 0.5. We now explore accuracy of the shortest path rule in comparison to the random
neighbor rule for growing N with simulations. We also include results for the Bayesian
rule, although this exercise is limited, as the rule’s computational complexity restricts our
simulations to N ≤ 20. We focus our discussion on settings with r, q > 0.5, where there
is at least some opportunity to learn.

Figure 8 shows the mean accuracy against the network size for several settings of q and
r, using Erdös-Rényi random networks with mean degree z = 5. Comparing the different
panels, mean accuracy in the top row is slightly lower than in the middle row because it
has a lower signal quality of q = 0.9 (versus q = 1), while link reliability is r = 0.9 in
both. Accuracy in the bottom row is lower than in the middle row because it has a lower
link reliability r = 0.7 (versus r = 0.9), while signal quality is perfect, i.e. q = 1, in both.

Besides confirming the previously reported results for the random neighbor rule (Medo
et al., 2020), there are a number of observations to make from Figure 8. First, the short-
est path rule performs significantly better than the random neighbor rule, in particular
when there are several source nodes (NS = 5, middle column) or when the number of
source nodes grows with the number of nodes (NS = N/10, right column). This confirms
Results 1 and 2 from above.

25



10 20 30 40 50 60 70 80 90100
0.5
0.6
0.7
0.8
0.9
1.0

m
ea

n 
ac

cu
ra

cy
 A

q = 0.9, r = 0.9, NS = 1

Bayes
ShPath
RNeighbor

10 20 30 40 50 60 70 80 90100
0.5
0.6
0.7
0.8
0.9
1.0

q = 0.9, r = 0.9, NS = 5

Bayes
ShPath
RNeighbor

10 20 30 40 50 60 70 80 90100
0.5
0.6
0.7
0.8
0.9
1.0

q = 0.9, r = 0.9, NS = N/10

Bayes
ShPath
RNeighbor

10 20 30 40 50 60 70 80 90100
0.5
0.6
0.7
0.8
0.9
1.0

m
ea

n 
ac

cu
ra

cy
 A

q = 1, r = 0.9, NS = 1

Bayes
ShPath
RNeighbor

10 20 30 40 50 60 70 80 90100
0.5
0.6
0.7
0.8
0.9
1.0

q = 1, r = 0.9, NS = 5

Bayes
ShPath
RNeighbor

10 20 30 40 50 60 70 80 90100
0.5
0.6
0.7
0.8
0.9
1.0

q = 1, r = 0.9, NS = N/10

Bayes
ShPath
RNeighbor

10 20 30 40 50 60 70 80 90100
number of nodes N

0.5
0.6
0.7
0.8
0.9
1.0

m
ea

n 
ac

cu
ra

cy
 A

q = 1, r = 0.7, NS = 1
Bayes
ShPath
RNeighbor

10 20 30 40 50 60 70 80 90100
number of nodes N

0.5
0.6
0.7
0.8
0.9
1.0

q = 1, r = 0.7, NS = 5
Bayes
ShPath
RNeighbor

10 20 30 40 50 60 70 80 90100
number of nodes N

0.5
0.6
0.7
0.8
0.9
1.0

q = 1, r = 0.7, NS = N/10
Bayes
ShPath
RNeighbor

Figure 8: Mean accuracy of the three rules for growing network size N . Results are for
Erdös-Rényi networks with z = 5, q = 0.9 and r = 0.9 (top row), q = 1 and r = 0.9
(middle row), and q = 1 and r = 0.7 (bottom row), NS = 1 (left column), NS = 5 (middle
column), and NS = fSN with fS = 0.1 (right column).
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Second, when NS is fixed, the mean accuracy of all three rules decreases with N ,
albeit at different rates. The rate of the shortest path rule, like for the random neighbor
rule, can be derived analytically for a single source node, as detailed in Appendix C.3.
In particular, the classical result for the average distance between two nodes chosen at
random in Erdös-Rényi random networks, L ≈ lnN/ ln z (e.g. Bollobás, 2001), can be
plugged in Eq. (7) to obtain

E[AShPath,ER] = 1
2 +

(
q − 1

2

)
(2r − 1)lnN/ ln z (8)

which holds for the shortest path rule and one source node. This E[AShPath,ER] approaches
0.5 as N → ∞ for any r < 1. The reason for the decrease in expected accuracy is the
effect of longer distances (cf. Result 4), but the speed of convergence to zero is lower than
for the random neighbor rule.

Result 5. When the number of source nodes is fixed, mean accuracy of the shortest path
rule converges to 0.5 slower than mean accuracy of the random neighbor rule.

Third, when the number of source nodes grows with N , the mean accuracy can even
increase with N (see results for the shortest path rule for r = 0.9 and NS = N/10)—the
information gained from a growing number of source nodes is sufficient to overweight the
shortest paths that become longer, on average, as N grows. This occurs for sufficiently
high link reliability r = 0.9. Theoretically, this effect is clear for r = 1, where additional
source nodes mean additional information without any loss due to long distances.

Result 6. Given that link reliability r is large enough, when the number of source nodes
grows proportionally with network size N , accuracy of the Bayesian rule and the shortest
path rule increases, in contrast to the random neighbor rule.

Fourth, although the Bayesian rule produces substantially higher mean accuracy when
r = 0.9, the difference between the Bayesian rule and the shortest path rule becomes much
smaller when r = 0.7 (bottom row). This holds for all three considered numbers of source
nodes: NS = 1, NS = 5, and NS = N/10.

Result 7. For low link reliability r accuracy of all three rules remains relatively low
regardless of the number of source nodes.

5 Concluding Remarks

We have investigated how an observer can learn from a signed network where node types
correlate with link signs. In such a setting, information about the type (e.g. trustworthi-
ness) of source nodes is informative for the type of a target node. In stylized networks,
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including trees, two relatively simple heuristics can lead to optimal learning, as we show
in the theoretical part. Studying less-stylized random networks with a sequence of simula-
tions, we find that differences in accuracy between the two heuristics and the optimal rule
can be substantial. The heuristic that was introduced in the literature (Medo et al., 2020),
the random neighbor rule, performs poorly when there is information about the type of
multiple nodes. The heuristic that we introduce in this paper, the shortest path rule,
performs much better with multiple source nodes, but generally relies on short average
distances.

Our model could be extended in several directions. First, we focus on two node types,
while we could integrate k node types as follows. Instead of a single link reliability
parameter r, consider a k × k matrix specifying the probability that nodes of each type
are connected by a positive link. Our current model is then nested by using a two-by-
two matrix where r is on the diagonal and 1 − r is off the diagonal. Nevertheless, one
justification for two node types comes from the property of structural balance that is
equivalent to the two-camp structure (Harary et al., 1953).

Second, to keep our model simple, we assumed that positive and negative links are
equally informative, as well as that positive and negative signals are equally informative.
A more general model could introduce asymmetry, e.g. to capture that a positive signal
form a source node with a positive link to the target node is more informative than a
negative signal from a source node with a negative link.

Third, our model works with undirected networks. In some applications, the signed
networks are directed and hence this is a considerable extension.

Fourth, one implicit assumption of our model is that the observer knows the whole
network and all link signs. In particular, the application of the shortest path rule assumes
that the observer has sufficient information to identify the shortest paths between nodes
in the network which is a non-trivial assumption when the corresponding network is
large. The research of navigability in complex networks (Boguna et al., 2009; Malkov and
Yashunin, 2018) is relevant in this respect, as it seeks to understand which features of
complex networks are helpful for finding shortest paths in them.

Finally, our model supposes that only link signs depend on node types, while the pres-
ence or absence of a link does not. This makes the analysis and interpretation clean, but
it is a limitation, as in reality also the presence of a link can depend on link types. For
instance, homophily in link formation can influence the presence of links (e.g. Currarini
et al., 2009) and evidence on homophily is abundant (e.g. Jackson, 2019). Given ho-
mophily, an observer can learn from the sheer presence of links about the type of nodes of
interest. With this perspective, the vast literature on detecting communities in non-signed
networks (Fortunato and Hric, 2016) serves the goal of learning about node types from
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the presence of links. Complementary to that we propose a model of learning about node
types from the sign of links. A new research avenue would combine these two approaches
in a framework that accommodates link presence and link signs that depend on link type.
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A Appendix: Proofs

A.1 Proof of Claim 1 (Equivalence)

The condition of Claim 1 (a unique path between t and each s ∈ S such that these
paths are non-overlapping) implies a network structure as exemplified in Figure 2 where
t is connected with source nodes by non-overlapping rays. Besides this tree structure,
the network can contain arbitrary subgraphs appended to individual network nodes as
they do not affect the uniqueness of paths between source nodes and t (see the subgraph
attached to node j3 and the path between s5 and t in Figure 2, for example).

We first show that if the network consists only of the path between one source node,
s, and target node, t, the Bayesian rule represented with Eq. (1) simplifies to

P [θ|σ,R] = qz1(θ)(1− q)z2(θ)rz3(θ)(1− r)z4(θ)

as the denominator of Eq. (1) (after canceling 1/2N) is then

Ω :=
∑
θ′∈Θ

qz1(θ′)(1− q)z2(θ′)rz3(θ′)(1− r)z4(θ′) = 1.

We prove this by induction. For the elementary graph with two nodes, s and t, and one
link, the sum over four possible states yields Ω = qr+q(1−r)+(1−q)r+(1−q)(1−r) = 1.
Here the first term, for example, corresponds to correct source signal and type-conforming
link between the two nodes. In one induction step, we append a node of degree one to one
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end of the current network for which Ω = 1 holds (adding a link elsewhere would create
a network outside the considered class). In the new denominator Ω′ each term of the
original denominator Ω is paired with two possible states of the added node, corresponding
to forming a node-types conforming link (with probability r) and a nonconforming link
(probability 1 − δ), respectively. We can thus write Ω′ = Ωr + Ω(1 − r) = Ω = 1 which
completes this step of the proof.

As the second step, we show that the belief derived with the Bayesian rule in Eq. (2)
coincides with the belief derived with the shortest path rule in Eq. (5) when the network
consists only of the shortest path between s and t. Eq. (2) states that

bBayes(t) =
∑

θ∈Θ(t)
P [θ|σ,R]

where Θ(t) are all 2N−1 states with θt = +1. When σ and R are given, the mapping
between states of the world θ and the values of z1 and z2 together with the confor-
mity information for each link is bijective. The direction from θ to z1 and conform-
ing/nonconforming links is obvious as it is used by the Bayesian rule. For the opposite
direction, σs combined with z1 determines the type of s (if z1 = 1, θs = σs, otherwise
θs = −σs). Progressing from the source node, the next node’s state is θi = Rijθj if the link
is conforming to the node types and θi = −Rijθj if the link is nonconforming. Each term
in the sum in Eq. (2) thus appears also in Eq. (5) (and vice versa). When os→t = +1, for
example, terms proportional to q (correct source signal) will be proportional to (1 − r)n

where n is even because an odd number of incorrect links would lead to θt = −1 which
does not contribute to the sum in Eq. (2). This step of the proof is thus concluded.

As the third step, we prove that attaching a subgraph to a single node in a given
network does not change the result obtained with the Bayesian rule. Upon attaching a
subgraph with link signs R′ to a node, the space of all states grows from Θ to Θ × Ψ
where Ψ is the space of states ψ of the subgraph nodes. We can write P (θ|σ,R) =∑
ψ∈Ψ P (θ,ψ|σ,R,R′). The numerator of P (θ|σ,R) can be written as

1
2N+N ′ · qz1(θ)(1− q)z2(θ)rz3(θ)(1− r)z4(θ) ∑

ψ∈Ψ
rz3(ψ)(1− r)z4(ψ)

where N ′ is the number of nodes in the subgraph. Crucially, the sum over ψ ∈ Ψ is
independent of θ as the subgraph is attached to a single node. If the attachment node
is of a positive type and ψ yields some z3(ψ) and z4(ψ), then −ψ would yield the
same z3 and z4 for a negative type of the attachment node.20 The terms 1/2N+N ′ and

20If, by contrast, we attach node x to two different nodes of an existing graph, the sum over two possible
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∑
ψ∈Ψ r

z3(ψ)(1 − r)z4(ψ) cancel out and we find that the obtained P (θ|S,R) is the same
as without the attached subgraph. If adding subgraphs does not change the Bayesian
inference, removing them has no effect as well. If only the shortest path between s and t

remains after removing all subgraphs attached to single nodes, the Bayes rule thus reduces
to the shortest path rule as we wanted to prove.

We have shown that for every network with a unique path from source node to target
node both Eq. (2) and Eq. (5) correctly determine the posterior belief about the target
node’s type. Consider now a network with multiple source nodes that have unique, non-
overlapping, paths to the target node as illustrated in Figure 2. Each subgraph with a
source node yields independent information about the target node. Since Eq. (6) is the
correct aggregation formula for independent signals, we can conclude that the introduced
shortest path rule indeed coincides with the Bayes rule for the given class of networks,
which finally completes our proof.

A.2 Proof of Proposition 2 (Same Best Guess)

We first show that according to the shortest path rule, the best guess coincides with the
path orientation, when there is only one source node. The shortest path rule uses path
orientation defined by Eq. (3), os→t := σs

∏L−1
m=0Rnm,nm+1 where n0, . . . , nL are the nodes

along the path, n0 := s, and nL := t. It further computes the probability that the path
orientation agrees with the type of node t as P (os→t = θt) = qπs→t + (1 − q)(1 − πs→t)
(see Eq. (5) and the discussion thereafter). Here πs→t is the probability that the path
between s and t has an even number of errors. Since r > 0.5, it follows from Eq. (4) that
πs→t > 0.5 for any finite L. We can now rewrite

P (os→t = θt) = 1− πs→t + q(2πs→t − 1)

which grows with q. Since P (os→t = θt) = 0.5 when q = 0.5, P (os→t = θt) > 0.5 for
q > 0.5. The computed probability that os→t correctly identifies the type of node t is
more than 0.5, so the best guess of t’s type produced by the shortest path rule is thus
always the path orientation. Note that we assumed here one source node but not the path
uniqueness, so the last statement holds for the shortest path rule on any network where
NS = 1.

When the path between s and t is unique, the random neighbor rule is deterministic
as the path over which the opinion on t is formed is given. According to this rule, the

states of node x is r2 + (1− r)2 when the attachment nodes have the same types whereas it is 2r(1− r)
when the attachment nodes have different types. The sum over ψ ∈ Ψ thus depends on θ and does not
factor out from P (θ|σ,R).
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judgment of node n1, which is adjacent to n0 := s, is a product of the source signal and
the sign of the link between the two nodes. The judgment of node n2 is further multiplied
by Rn1n2 , and so on, until the judgment of t is determined as a product of the source
signal with link signs along the path which is precisely the path orientation os→t. The
two rules thus coincide when NS = 1 and the path between s and t is unique.

A.3 Proof of Claim 3 (Shortest Path Accuracy)

Assume that node states θ are fixed. As we showed in Section A.2, os→t is the best guess
of θt for the shortest path rule. The probability that os→t = θt is qπs→t + (1− q)(1− πs→t
where the first term accounts for a correct source signal and an even number of errors
along the path from s to t, and the second term accounts for an incorrect source signal
and an odd number of errors along the path from s to t, respectively. Using Eq. 4, this
probability can be simplified to the form

P (os→t = θt) = 1
2 +

(
q − 1

2

)(
2r − 1)L.

This result already takes into account the limited reliability of source signals and link
signs: it averages accuracy over different realizations of σ and R. As it does not depend
explicitly on node states θ, it is straightforward to average it over θ and thus obtain the
expected accuracy in line with Definition 2.

A.4 Proof of Proposition 1 (Ordering)

The Bayesian rule uses all available information, source signals σ and link signs R, to
correctly compute the objective probability that target node t is of positive type. It is thus
the optimal rule by construction and its expected accuracy is the highest of all possible
rules, hence E[ABayes] ≥ E[AShPath] and E[ABayes] ≥ E[ARNeighbor].

When NS = 1, the ordering between the shortest path rule and the random neighbor
rule can be established as follows. Denote the shortest path length between s and t as
L; the expected accuracy of the shortest path rule can be obtained using Eq. (7). As
already explained, the judgment formed using the random neighbor rule corresponds to a
path between s and t. Denote this path’s length as L′. As the best guess of the shortest
path rule is the same as the judgment formed formed by the random neighbor rule (both
are equal to the path orientation os→t), the expected accuracy of the random neighbor
rule can be computed using Claim 3 with the only difference being that the shortest path
length L is replaced by the actual path length L′. Now, every path length L′ must be
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at least as long as the shortest path length, L′ ≥ L. As the expected accuracy decreases
with L′ [when r ∈ (0.5, 1)], we immediately obtain that E[AShPath] ≥ E[ARNeighbor].

When NS > 1, the judgment of t formed using the random neighbor rule is still
formed using a path of length L′ between one source node and target node t. By contrast,
the shortest path rule uses shortest paths from each source node and aggregates beliefs
resulting from Eq. (5) using Eq. (6). While these paths have different lengths, Li, the
shortest of them cannot be longer than L′: minLi ≤ L′. This path alone results in
expected accuracy of the shortest path rule which is larger or equal than expected accuracy
of the random neighbor rule. The additional paths used by the shortest path rule, some
of which may be longer than L′, represent useful information that is taken into account
by this rule and thus further improve its expected accuracy. We can thus conclude that
E[AShPath] ≥ E[ARNeighbor] holds also for NS > 1.

A.5 Proof of Proposition 2 (Unique Path)

According to Claim 1, a unique non-overlapping path between every source node s and
the target node t implies that the best guess obtained with the Bayesian rule and the
shortest path rule are the same. If, in addition, there is only one source node, Claim 2
states that the best guess of the shortest path rule and the random neighbor rule are the
same. When NS = 1 and the path between s and t is unique, the three rules thus yield
the same best guess for any realization of θ, σ, R, their accuracy values are thus the
same. As a consequence, the expected accuracy values obtained by averaging over θ, σ,
R are also the same.

B Appendix: Examples

B.1 Application of the Three Rules to the Example Depicted in
Figure 1

Reconsider the very first example of employees that is depicted in Figure 1. In terms of our
set-up vertices are V = {s1, s2, i, j, t}, where s1 and s2 are the source nodes and t stands
for the target node. Edges are E = {s1t, s1i, s2j, it, jt} with signs Rs1t = Rit = Rs2j = +1
and Rs1i = Rjt = −1. Finally, source nodes’ signals are σs1 = +1 and σs2 = −1 and
(by convention si = sj = st = 0). We have addressed two subgraphs of this graph as
Examples 1 and 2 in the main text.

Now, for the complete example, the Bayesian rule considers 25 = 32 states. The result
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simplifies to

bBayes(t) = 2r2(1− r) + q(1− 4r + 3r2 + 2r3 − r4) + q2(−1 + 4r − 3r2 − 4r3 + 5r4)
2r2(2− 3r + 2r2) + q(2− 8r + 7r2 + 6r3 − 9r4) + q2(−2 + 10r − 15r2 + 4r3 + 5r4)

and bBayes(t) ≈ 0.748 when q = 0.9 and r = 0.8.
The shortest path rule combines the information from both parts of the network by

applying Equation (6) to the beliefs that were derived from the paths s1, t and s2, j, t.
This yields

bShPath(t) = bs1→tbs2→t

bs1→tbs2→t + (1− bs1→t)(1− bs2→t)
.

When q = 0.9, r = 0.8, then bs1→t = 0.74, bs2→t = 0.644, and bShPath(t) ≈ 0.837.
Observe that the belief from the path s1, t is stronger than from the longer path s2, y, t,
which illustrates that the shortest path rule discounts paths by their length. Beside
this, aggregating information from both paths improves the final confidence level. This
reinforcement of beliefs holds here as both paths have the same orientation.

The random neighbor rule starts with judging the two source nodes. The judgement of
t depends on the realization of the random order of nodes to be judged. Overall, we have
a 29/36 chance to reach gRNeighbor(t) = +1 and a 7/36 chance to reach gRNeighbor(t) = −1.

B.2 More Examples

Example B.1 (Two Triangles). Let (V,E) = ({s, j1, j2, t}, {st, sj1, sj2, j1t, j2t}). Let
Rst = Rsj1 = Rsj2 = +1 and Rj1t = Rj2t = −1 and let σs = +1, as illustrated in
Panel (A) of Figure 3. The Bayesian rule yields:

bBayes(t) = 4qr3(1− r) + 2(1− q)r2(1− r)2 + (1− q)[r4 + (1− r)4]
4r3(1− r) + 2r2(1− r)2 + [r4 + (1− r)4]

where bBayes(t) ≈ 0.476, when q = 0.9, r = 0.8. The shortest path rule yields

bShPath(t) = qr + (1− q)(1− r)

where bBayes(t) = 0.74, when q = 0.9, r = 0.8.
We receive bBayes(t) < bShPath(t) (for any q, r ∈ (0.5, 1)), which can be checked, e.g. by

Mathematica 12.0. The shortest path rule only uses the direct path, which has a positive
orientation. However, the Bayesian rule uses all information including the two paths of
length 2, which are both negatively oriented.

Example B.2 (Multiple shortest paths). Let (V,E) = ({s, j1, j2, j3, t}, {sj1, sj2, sj3, j1t, j2t, j3t}).
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Let Rij = +1 for all links in E except for j3t (Rj3t = −1) and σs = +1, as illustrated in
Panel (B) of Figure 3.

The Bayesian rule always leads to a belief bBayes(t) > 0.5, hence the best guess is
gBayes(t) = +1.

The shortest path rule selects one of the three shortest paths at random. Hence, with
probability 2/3 it induces belief bShPath(t) = qr+ (1− q)(1− r) > 0.5 and with probability
1/3 it induces belief bShPath(t) = q(1− r) + (1− q)r < 0.5.

Example B.3 (Overlapping Paths). Let (V,E) = ({s1, s2, j, t}, {s1j, s2j, jt}). Let Rij =
+1 for ij ∈ E and let σs1 = σs2 = +1, as illustrated in Panel (C) of Figure 3.

The Bayesian rule yields:

bBayes(t) = q2[r3 + (1− r)3] + 2q(1− q)r(1− r) + (1− q)2r(1− r)
[q2 + (1− q)2][(1− r)3 + r3] + 4q(1− q)r(1− r) + [q2 + (1− q)2]r(1− r) ,

which is bBayes(t) ≈ 0.734 for q = 0.9 and r = 0.8. The shortest path rule yields:

bShPath(t) = bs1→tbs2→t

bs1→tbs2→t + (1− bs1→t)(1− bs2→t)

where bs1→t = bs2→t = q[r2 + (1− r)2] + 2(1− q)r(1− r), for q = 0.9 and r = 0.8, bs1→t =
bs2→t = 0.644. Finally, we get bShPath(t) ≈ 0.766. We receive (for any q, r ∈ (0.5, 1)):
bShPath(t) > bBayes(t), which can be checked, e.g. by Mathematica 12.0.

C Appendix: Simulations

C.1 Simulation Details

Erdös-Rényi (ER) random networks have two parameters: network size N and probability
p which determines the connection probability for every pair of nodes in the network. We
set p = z/(N − 1) to obtain mean node degree z.

Regular graphs (RG) are random graphs where each node has z links. They are
constructed by assigning z “stubs” to each node and matching node stubs at random
until no unmatched stubs remain. Loops and multiple links are avoided.

Barabási-Albert (BA) random networks with N nodes are grown by gradually adding
nodes to an initial empty network with m nodes. Every new node with m edges is
attached to existing nodes using the preferential attachment mechanism (i.e., the prob-
ability of choosing a node is directly proportional to the node’s degree). We set m =
[(n−

√
n2 − 2zn)/2] to obtain mean node degree z (approximately).
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Watts-Strogatz (WS) random networks have three parameters: network size N , mean
degree z (this is assumed to be an even integer), and rewiring probability β ∈ [0, 1]. The
networks are generated as follows:

1. Construct a regular ring lattice where each node is connected to its z nearest neigh-
bors.

2. Go over all nodes i = 1, . . . , N and with probability β rewire each of the links to
their right neighbors (i.e, neighbors j = (i+ k) mod N where k = 1, . . . , z/2) to a
node chosen at random. Loops and duplicate links are avoided.

In our simulations, we use the network generator functions provided by the Light-
Graphs v1.3.3 package of Julia programming language.21

21https://github.com/JuliaGraphs/LightGraphs.jl.

38

https://github.com/JuliaGraphs/LightGraphs.jl


C.2 Robustness of Simulations with respect to Network Topol-
ogy

0.5 0.6 0.7 0.8 0.9 1.0
0.5
0.6
0.7
0.8
0.9
1.0

m
ea

n 
ac

cu
ra

cy
 A

BA, NS = 1
Bayes
ShPath
RNeighbor

0.5 0.6 0.7 0.8 0.9 1.0
0.5
0.6
0.7
0.8
0.9
1.0

BA, NS = 5
Bayes
ShPath
RNeighbor

0.5 0.6 0.7 0.8 0.9 1.0
0.5
0.6
0.7
0.8
0.9
1.0

m
ea

n 
ac

cu
ra

cy
 A

RG, NS = 1
Bayes
ShPath
RNeighbor

0.5 0.6 0.7 0.8 0.9 1.0
0.5
0.6
0.7
0.8
0.9
1.0

RG, NS = 5
Bayes
ShPath
RNeighbor

0.5 0.6 0.7 0.8 0.9 1.0
link reliability r

0.5
0.6
0.7
0.8
0.9
1.0

m
ea

n 
ac

cu
ra

cy
 A

WS, NS = 1
Bayes
ShPath
RNeighbor

0.5 0.6 0.7 0.8 0.9 1.0
link reliability r

0.5
0.6
0.7
0.8
0.9
1.0

WS, NS = 5
Bayes
ShPath
RNeighbor

Figure C.1: Mean accuracy of the three rules for various classes of random networks.
Setting signal quality q = 0.9, network size N = 20, average degree z = 4, and for
different values of link reliability r. Top panels use BA, center panel RG, lower panel WS
(rewiring probability is β = 0.1). Left panels have single source node; right panels have
NS = 5 source nodes.
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Figure C.2: Accuracy of the Bayesian rule for various classes of random networks and
different levels of link reliability r. Results are for N = 20, z = 4, q = 0.9, NS = 1
(left) and NS = 5 (right). Shortest path lengths estimated in simulations for NS = 1 are
2.17± 0.02 (ER), 2.16± 0.01 (RG), 2.18± 0.01 (WS, β = 0.5), and 2.51± 0.02 (mean ±
twice the SEM) which qualitatively agree with the ordering of mean accuracy in the left
panel. This suggests that the shortest path length is also important for accuracy of the
Bayesian rule.

C.3 Shortest Path Rule’s Accuracy in Erdös-Rényi Random
Networks

As explained in the main text, the average shortest distance between two random nodes
in Erdös-Rényi random networks is LER ≈ lnN/ ln z (e.g. Bollobás, 2001). By plugging
this LER for L in Eq. (7), we obtain the expected accuracy of the shortest path rule in
Erdös-Rényi random networks (Eq. (8) in the main text). As shown in Figure C.3, this
analytical result agrees well with numerical simulations.

In (Medo et al., 2020), a relation similar to Eq. (8) has been derived for the random
neighbor rule. This relation states that the “effective” accuracy, E(A)−0.5, of the shortest
path rule is proportional to N−2(1−r) when NS is fixed. Eq. (8) allows us to derive here
a similar scaling relation for the shortest path rule. We find that E[AShPath] − 0.5 ∼
N−γShP ath where

γShPath = − ln(2r − 1)/ ln z. (C.1)

We see that unlike for the random neighbor rule where the scaling exponent 2(1 − r)
depends only the link reliability (see Medo et al., 2020, for a derivation), here both link
reliability and mean degree contribute. As mean degree increases, the scaling exponent
γ decreases which means that E[AShPath] − 0.5 vanishes slower with N , i.e. E[AShPath]
approaches 0.5 slower. At the same time, γShPath is independent of q: While signal quality
q strongly influences the absolute value of expected accuracy E[AShPath], it does not affect
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Figure C.3: (a) Left panel: Accuracy of the shortest path rule for Erdös-Rényi networks
with N = 100, z = 5, q = 1. (b) Right panel: Estimated exponents of the scaling
relation E(AShPath)−0.5 ∼ N−γShP ath for numerical simulations on Erdös-Rényi networks
with various mean degree values (symbols) and analytical result obtained using Eq. (C.1)
(lines). The exponents were estimated from simulation results using least squares fits
between ln[E(AShPath)− 0.5] and lnN for N between 50 and 500.

its decay with N .
Figure C.3b shows that while Eq. (C.1) agrees well with numerical simulations for

r & 0.65, significant deviations appear for low r values (in particular, the analytical γ
diverges as r → 0.5). The main reason for the deviations is that to derive Eq. (8), we
plugged the average shortest path length in Eq. (7). While this is justified by relatively
narrow distributions of the shortest path length in Erdös-Rényi networks, it does not
produce sufficiently precise results when r is close to 0.5: the term 2r−1 in Eq. (7) is then
small and AShPath thus depends strongly on L. If instead of using the average shortest
path length, we numerically determine the distribution of the shortest path lengths in
Erdös-Rényi networks and use this empirical distribution to average over various shortest
path lengths in Eq. (7), we obtain scaling exponents that do not diverge as r → 0.5 and
agree well with numerical simulations for all r (results can be requested from the authors).
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