Development of Mental Transformation Abilities

Andrea Fricka, Wenke Möhringb, & Nora S. Newcombeb

a University of Bern

b Temple University

NOTICE: this is the author's version of a work that was accepted for publication in \textit{Trends in Cognitive Sciences}. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document.

Changes may have been made to this work since it was submitted for publication.

A definitive version is published as:

aDepartment of Psychology, University of Bern, Fabrikstr. 8, 3012 Bern, Switzerland. Email: depsy@gmx.net

bDepartment of Psychology, Temple University, Weiss Hall 318, 1701 North 13th Street, Philadelphia, PA 19122-6085, United States. Email: wenke.moehring@gmail.com; Newcombe@temple.edu

Correspondence concerning this article should be addressed to Andrea Frick, Department of Psychology, University of Bern, Fabrikstr. 8, 3012 Bern, Switzerland. Email: depsy@gmx.net
Abstract

Mental representation and transformation of spatial information is often examined with mental rotation tasks, which require deciding whether a rotated image is the same or the mirror version of an upright image. Recent research with infants shows early discrimination of objects from mirror image versions. However, even at age 4, many children perform near chance level on more standard measures. Similar age discrepancies can be observed in other domains, including perspective taking, theory of mind, and intuitive physics. These paradoxical results raise the questions of how performance relates to competence, and how to conceptualize developmental change. There may be a common underlying mechanism: the development of the ability to imagine things and mentally transform them in a prospective fashion.

Keywords: cognitive development, mental rotation, theory of mind, intuitive physics, perspective taking, simulation
One of the most impressive skills of the human species is an ability to represent and mentally transform the shapes of objects. People can generate mental images of two-dimensional shapes or three-dimensional objects, and can transform them in various ways, e.g., rotating, bending, or folding them [1]. Such flexible representations are vital for making predictions regarding the positions of moving objects, for example to avoid collisions when crossing a street. They also allow for anticipating the effects of actions when manipulating objects or using tools. Furthermore, the ability to perform mental spatial transformations predicts number and math skills [2,3]. Thus, determining the origins and development of mental transformations is a central and topical problem in cognitive science, with translational implications for intervention. However, research on this issue has led to paradoxical findings, with infants showing remarkable abilities but young children failing on seemingly similar tasks. In the present article we put these contrasting results in context with similar findings in other domains, and suggest an underlying mechanism.

Age Discrepancies in Mental Transformation

Much of the previous research on mental transformation has focused on a specific kind of spatial transformation, termed mental rotation (MR), which refers to imagining a rotational movement of an object (or array of objects) in 2- or 3-dimensional space. In a classic MR task [4], participants must decide whether a rotated image is the same as a comparison image, or its mirror image. In developmental research, this paradigm has been adapted for the use with children and even infants, with oddly contrasting results.

Studies with Preschoolers and Young Children
Although Marmor [5,6] found that 4- to 5-year-olds were able to perform MR, there has been controversy about her conclusions [7]. A follow-up study employing the same procedure with different stimuli failed to replicate Marmor’s results [8]. Other studies showed that at 4 to 5 years, many children performed at chance, and only few showed signs of MR [9-11]. Even efforts to simplify the tasks by using a touch screen or presenting simple and engaging stimuli have failed to demonstrate MR in 3-year-olds, let alone younger children [12,13]. Some other tasks that have been used with toddlers and young children can be solved by using feature strategies and may not require MR (Box 1).

Infant Studies

In sharp contrast to research with preschoolers, recent research has shown that infants can discriminate mirror images despite differences in orientation [14-21]. For example, in two such studies [14,15], infants saw an asymmetrical object being moved straight down behind an occluder. When the occluder was lowered it revealed either the same object (possible event) or its mirror image (impossible event) in one of five different orientations (Figure 1). Infants had been shown beforehand that the backside of the object looked different, so the mirror image was impossible. Six-month-olds looked longer at the impossible than at the possible outcomes, suggesting that they discriminated mirror images. Other studies using similar violation-of-expectation paradigms showed that infants looked longer at incongruent than at congruent outcome orientations of objects undergoing a hidden rotation [22-24].

These findings suggest that infants possess fairly sophisticated abilities, yet much older children struggle with MR tasks. Thus, it is unclear whether infant and
preschool tasks measure the same ability, how performance on these tasks relates to
competence, and how to conceptualize mechanisms of developmental change. Adding to
the heterogeneous picture, sex differences in MR seem to be robust in adults, but have
only rarely been found before 9 years of age (Box 2). However, there are various
potential reasons for the observed performance differences, as paradigms used with
infants differ from those used with children in several ways.

Task Differences

Presentation of Motion or Multiple Views

In MR paradigms used with adults [4] and children [5,6,9,25-27], stimuli are
typically static images in single orientations. In contrast, infant often see objects in
actual physical rotation before the test [16,17,20,21,23,24], or in multiple static
orientations [18,19]. This may allow infants to extrapolate motion or to interpolate
between familiar views [28]. Indeed, research has demonstrated that infants are better at
recognizing objects that are presented in motion compared to static views [29].

However, showing motion or multiple views can now be ruled out as the sole
explanation for early success, in light of recent evidence suggesting that 6-month-olds
are able to discriminate an object from its tilted mirror version, even after being
familiarized to the upright object only [14,15]. Nevertheless, presenting an object in
motion or multiple views may lower task difficulty, causing infants as young as 3 to 4
months to succeed [16,18,23,24].

Presentation of Outcome

Another task difference lies in the fact that infants typically are confronted with
congruent and incongruent outcomes of rotational events, whereas children have to
predict the outcome [30]. Thus, infants’ reasoning may be limited to recognizing incongruities *retrospectively*, and they may simply react to violations of basic principles such as object solidity and continuity. In contrast, children’s tasks require *prospective* spatial transformations that may be more cognitively demanding, as they involve mentally simulating a rotational event and inhibiting current sensory input [31].

Differences in Measurement

Tasks in infancy research use dependent variables such as looking time, eye movement, ERP, and heart rate. Such variables may tap different cognitive competencies than dependent variables that require explicit judgment, conscious choice, or decision-making. Moreover, older children generally must perform a motor response that may increase cognitive load, leading to a cognition/action trade-off [32]. Indeed, discrepancies between reports of amazing abilities in infants and profound lacks in older children are not confined to MR, but are also found in other cognitive domains.

Age Discrepancies in Other Domains

Perspective Taking

Perspective taking refers to the ability to adopt someone else’s spatial perspective. It is logically akin to MR, as it involves mentally rotating oneself into another vantage point. But despite this similarity, perspective taking and MR are dissociated in various behavioral and neural ways [33-35]. Developmental research has shown that perspective taking emerges around 4 or 5 years but improves considerably through age 8 [36]. Even though preschoolers perform better on tasks in which responses are not influenced by conflicting frames of reference [37], they still make many egocentric errors.
In contrast, infants as young as 14 months succeeded in perspective-taking tasks that measured looking times [38,39]. For example, when asked to help an experimenter find an object, 24-month-olds inferred whether an object was visible or hidden from the experimenter’s point of view, and helped in obtaining the occluded object [38].

Theory of Mind

The development of metacognitive knowledge, or *Theory of Mind* [40] is often assessed by a false belief task [41]. For example, suppose a character (Maxi) aims to retrieve chocolate that has been relocated in his absence. Asked where Maxi will look for the chocolate, all of the 3- to 4-year-olds and almost half of the 4- to 6-year-olds say that Maxi will look in the new place (where children knew the chocolate is) rather than in the original place (where Maxi would falsely believe the chocolate is). Such results suggest that it is not until 4 to 6 years of age that the ability to represent another person’s epistemic state emerges.

On the other hand, infant studies have suggested an early ability to attribute complex mental states and false beliefs to others [40,42]. For example, a study that followed the logic of the Maxi-study [43] showed that 15-month-olds looked reliably longer if an experimenter searched for a toy in a place where it was relocated to in her absence, as compared to when she searched where she had previously observed the toy being hidden.

Intuitive Physics

Another domain where age discrepancies have been found concerns children’s understanding of the physical world [30]. A large body of research revealed that young infants show a stunning sophistication in their understanding of basic physical principles
Spelke and colleagues [45] showed that infants as young as 2½ months have a sense of solidity and continuity, and respond with prolonged looking if a solid object passes through or jumps over an obstacle. However, contrasting findings pointed to a surprising lack of such knowledge in 2- and 3-year-olds (e.g., [46-48]).

To investigate these age discrepancies within a single study, Hood, Cole-Davies and Dias [49] tested preschoolers on an observation task as well as a search task. Children watched a ball rolling behind a screen that partly occluded a solid barrier. Whereas children’s looking times suggested that they detected violations of solidity (i.e., the ball seemingly passed through the barrier), this sensitivity was not associated with successful search behavior.

Conceptualizing Development

How can these paradoxical age discrepancies be explained? One possible interpretation is to assume a U-shaped developmental trajectory (see Figure 2, Panel A), in which infants possess an early ability that is temporarily lost and reacquired later. However, as discussed above with regards to MR, infant paradigms (Paradigm\textsubscript{1}) and paradigms used with older children (Paradigm\textsubscript{2}) differ in many ways. Hence, we should also consider an alternative trajectory (Figure 2, Panel B), with two possible versions. In one scenario, Paradigm\textsubscript{1} and Paradigm\textsubscript{2} measure entirely different abilities. In a more parsimonious scenario, Paradigm\textsubscript{1} and Paradigm\textsubscript{2} tap the same ability on different levels of sophistication. In the case of MR, further research is needed do distinguish between these two scenarios; in particular, finding a method for indexing the time infants take to mentally rotate a stimulus (in analogy to adults’ response times) would advance our understanding.
In the domain of intuitive physics, Hespos and Baillargeon [50] found that developmental patterns observed in looking-time paradigms also hold for reaching tasks, supporting the view that looking-time and reaching tasks tap the same physical knowledge, rendering a U-shaped development unlikely. The notion that different tasks may tap the same knowledge at different levels of abstraction is also supported by the fact that adults who show misconceptions about physical laws in their explicit judgments are nevertheless able to perform mental simulations and behave in accordance with the same laws (e.g., [51-53]).

With regards to theory of mind, Perner and Roessler [40] assume that early sensitivity is shown in implicit “online tasks”, in which engagement with ongoing events reflects expectations, whereas traditional tasks require explicit judgment and an intentional switch of perspectives. For perspective taking, there is a general agreement that the ability can be measured at different levels of sophistication [36]. Infant tasks typically measure Level 1 perspective taking, which require an understanding of what another person sees – an inference that can be made by tracing the line of sight. Older children fail on Level 2 tasks, requiring a more sophisticated understanding of how a person sees the environment. Thus, in line with the assumed trajectory in Panel B of Figure 2, children’s tasks assess perspective taking at a higher level, which presumably requires mentally assuming someone’s viewpoint while ignoring one’s actual perceptual input.

Common Mechanism?

Taken together, contrasting results of seemingly sophisticated competencies in infancy and surprisingly low performance in preschoolers can be found in several
cognitive domains. Some of these domains appear closely related, such as perspective taking and theory of mind; others do not seem to have very much in common, such as knowing how a ball rolls and reasoning about another person’s beliefs. Furthermore, it is remarkable that similar age dissociations are found not only in areas such as intuitive physics and theory of mind, which have conceptual content, but also for spatial transformations that are generally considered to be analog and perception-like in nature [54]. However, the findings of similar dissociations across cognitive domains may be informative, indicating a common underlying mechanism. In particular, the fundamental ability to transform mental representations may be instrumental in understanding other people’s perspectives, mental states, and physical events [9,55].

A great deal of research has provided evidence for mental simulation as a strategy to solve mechanical and dynamic physical problems (e.g., [52]). Such mental simulations may tap tacit or implicit knowledge about physical constraints such as object constancy, solidity, or inertia that may be present early in life. Schwartz and Black [56] argued that people may fall back on imagistic mental models in situations where they do not have adequate explicit knowledge. However, although implicit knowledge may be activated during mental simulation, it may not be consciously accessible or open to reflection. Wilson [57] assumes that these simulations piggyback on mental structures that originally evolved for perception or action and can now be run “off-line,” dissociated from actual physical inputs and outputs (cf. [58] for ideas on conceptualizing such decoupling). This notion is in line with findings that MR ability is closely linked to motor activity and motor development (Box 3).
Mental simulation has also been used to explain the mechanisms underlying theory of mind. Whereas theory theorists posit that children acquire a conceptual understanding of the mind, simulation theorists claim that we can infer what another person thinks, knows, or plans by mentally simulating their situations [59]. According to simulation theory, we form predictions about our own or other’s actions by engaging in a kind of “pretend-play”, while suppressing behavioral output.

Developmental progress in the understanding of other people’s minds may therefore be due to increasing imaginative skills, allowing children to simulate more complex situations [9]. Others [60] have postulated that self-projection may be a common mechanism underlying theory of mind, prospection, episodic memory, and navigation, with all of these cognitive abilities relying on autobiographical information. Here, we go a step further, proposing that the ability to flexibly change mental representations may be even more fundamental, also allowing for the anticipation of non-biological motion and physical events.

Conclusion

Developmental research has shown apparently sophisticated abilities in infants across multiple domains, whereas older children struggle with seemingly similar tasks. Recent infant studies in the domain of mental rotation have demonstrated similar patterns of paradoxical age discrepancies, providing new support for the claim that mental simulation may be key to successful performance in many cognitive domains. Whereas content, modality, and simulated perceptual inputs may vary across domains, the ability to flexibly transform mental representations regardless of the sensed, known,
or believed actuality may be a common mechanism of fundamental importance for a
host of cognitive abilities and their development.

In line with a simulation account, Perner and Roessler [40] note that early
sensitivity is only observed in spontaneous and immediate responses, suggesting that
implicit knowledge is available only briefly after stimulus presentation. Thus, mental
simulations may initially be too short-lived and weak to guide complex verbal or action
responses. Along with developing mental transformation abilities they may become
stronger, more resistant to decay, and hence more behaviorally relevant. Furthermore, in
accordance with the notion of graded representations [61], different tasks may be more
or less likely to evoke mental simulations, and therefore require different
representational strength. Developmental progression in mental transformation ability,
possibly along with growing executive functions [31,62] that allow for ignoring
perceptual input and inhibiting motor output, may enable more complex and more
sustained simulations of alternative scenarios, raising the abilities in these cognitive
domains to a higher level.
Box 1. Distinctive Stimulus Features

Some researchers have used manipulation tasks to study MR in toddlers between 2 and 5 years of age [3,63,64]. The goal of these tasks was to manually rotate an object into the same orientation as a reference object, to its upright (canonical) position, or so that it would fit through an aperture. The assumption has been that toddlers mentally rotate the object first to form an (efficient) action plan. However, it can be argued that toddlers do not need MR to succeed in these tasks. Instead they may infer in which direction an object needs to be turned based on object features, such as the orientation of the longest axis, or the position of its top (head) or base. For instance, if we showed a child a figurine lying on a table and asked the child to stand it up, the child may identify the figurine’s feet and then simply put it “on its feet”. The child does not necessarily need to mentally rotate the figurine beforehand, because a simple strategy to ‘bring the feet to the lowest possible position’ would lead to success.

When children are presented with alternatives that can be distinguished based on features (cf. [2,65-68]), we cannot draw firm conclusions about MR, unless we can rule out such feature strategies, for instance by using mirror images, as suggested by Shepard and Metzler in their original study [4].
Box 2. Sex Differences

Research on adults’ MR has generally yielded a male advantage [69,70]; however, the underlying reasons for the difference are unclear, as is the age when the difference is first evident. Although some studies suggested that the sex difference is largely due to different speed-accuracy trade-offs, with females responding more slowly but more accurately than males [71], a meta-analysis with participants between 8 and 29 years of age showed that sex differences are smaller and yet not eliminated by unspeeded conditions [72]. Some researchers have proposed biological reasons for the male advantage, based on findings that exposure to heightened levels of prenatal androgens due to congenital adrenal hyperplasia [73] or male twins [74] were associated with higher MR performance in females.

In line with biological explanations, some MR studies [16-19] showed a male advantage in infants as young as 3 to 10 months. However, a majority of studies with infants did not show sex differences [14,15,20-24]. Moreover, several studies with preschool through primary school children did not report any systematic advantages (e.g., [5,6,9,13,25-27,75,76]), or even found higher error rates in boys [11]. Interestingly, a meta-analysis found an increase in effect size as a function of chronological age [70], and more recent research suggests that gender differences emerge around 9 years of age [77,78]. These findings raise the question of what factors may promote sex differences around that age.

One such factor may lie in males experiencing more activities that involve spatial thinking compared to females (such as playing video games [79-81]). Another factor is suggested by studies [82,83], showing that instruction-induced expectations
about gender differences can affect performance. Neuroimaging results [84] indicate that negative stereotypes promote less efficient neural strategies and increase emotional load, whereas positive stereotypes are associated with heightened activation in visual processing areas and working memory processes. Surprisingly, such negative correlations between spatial anxiety and MR performance can be found in girls as young as 5 to 8 years [67]. The question of how biological, psychological, or social factors interact to influence sex differences in MR is currently unsettled [85].
Box 3. Motor Effects

Research on embodied cognition suggests that motor processes are involved in MR. Studies with adults have shown that motor areas of the brain are recruited during MR with specific activation of the supplementary motor area (see [35,86] for a meta-analysis and review). This area is associated with motor control and simulation, suggesting that participants may perform a covert motor simulation during MR. Such motor simulation strategies can be induced through training, as manual rotation or rotation of hand stimuli led to increased activity in motor areas in subsequent object rotation tasks [87,88]. Behavioral studies demonstrated that even training in seemingly unrelated activities such as juggling [89] or wrestling [90] can improve MR performance. Moreover, studies using double-task paradigms showed that hand movements that are compatible or incompatible with the direction of MR [91-93], or even just the planning of such movement [94], can have differential effects on MR of objects, suggesting that manual and mental rotations share common processes.

Similarly, developmental studies have shown effects of simultaneous hand movements or postures on children’s MR [26,95] or mental simulations of physical events [96]. Interestingly, these studies have suggested that the effects of action on cognition decrease over development. Other studies have shown that 10-year-olds’ MR was facilitated by training to manually rotate objects by means of a joystick [97]. There is also correlational evidence for an association between MR and the development of motor abilities, specifically the development of motor control in 5- to 6-year-olds [75].

Research with infants has demonstrated that motor development, especially locomotor ability, is associated with MR performance [14,20,21]. Increased experience
with self-initiated movement may enable infants to think about spatial relations between objects in more allocentric terms. In addition to correlational data, there is experimental evidence that infant’s MR is facilitated by active motor experience [15,22], but such active exploration becomes less crucial as infants grow older. Active hands-on exploration may be especially beneficial for young infants, because such interactions may lead to a more stable mental representation of the object [98], which in turn may be more resistant to decay during MR. Overall, developmental findings suggest that motor processes play a functional role in the development of MR abilities and that MR performance becomes increasingly dissociated from overt motor activity, perhaps due to an increasing ability to perform covert motor simulations.
Box 4. Outstanding Questions and Future Directions

If mental transformation ability is a common mechanism that is fundamental to successful performance in all of the domains discussed, do these cognitive activities rely on similar brain processes and share a common neural substrate? We know from neuroimaging studies that, even though some brain regions appear to be selectively activated by tasks requiring object versus perspective transformations, a much larger number of brain regions are commonly activated during both of these tasks [35]. Whereas much of the previous research has aimed at distinguishing these processes, future research could focus on commonalities and investigate whether an area of neural overlap can be identified (see also [60] for a discussion of neural overlap between theory of mind, perspective taking, and prospective thinking). Furthermore, correlational studies should address whether good mental transformation skills are associated with better performance in the other domains, and training studies should test whether practicing mental transformation skills would lead to improved simulations of physical events or other people’s mental states.

From a developmental perspective, it would be informative to investigate whether mental simulation and the abilities in the above mentioned cognitive domains are related to the development of executive functions, specifically inhibitory control, which is presumably necessary for inhibiting current perceptual input and motor output while simulating alternative realities.
Acknowledgments

This research was supported by research grants from the Swiss National Science Foundation # PZ00P1_131866 and from the US National Science Foundation #SBE-0541957 and SBE-1041707. We thank two anonymous reviewers for their helpful comments.
References

47 Hood, B., et al. (2000) Predicting the outcomes of physical events: Two-year-olds fail to reveal knowledge of solidity and support. *Child Dev.* 71, 1540-1554
50 Hespos, S.J. and Baillargeon, R. (2008) Young infants' actions reveal their developing knowledge of support variables: Converging evidence for violation-of-expectation findings. *Cognition* 107, 304-316

55 Joh, A.S., *et al.* (2011) Imagining a way out of the gravity bias: Preschoolers can visualize the solution to a spatial problem. *Child Dev.* 82, 744-750

Figure Captions

Figure 1. (a) Front and back views of the stimulus object, and (b) sequence of test events used by Möhring and Frick, with examples of possible (top) and impossible (bottom) outcomes (t = timeline; dashed lines = movement trajectory of stimulus object). Adapted with permission from [14,15].

Figure 2. Schematic illustrations of hypothetical developmental trajectories, assuming a U-shaped (A) or a more linear (B) developmental progression of competency, measured by infant paradigms (Paradigm1) and paradigms used with preschoolers and children (Paradigm2).
Figure

(a) **Stimulus Object**

Front Back

(b) **Video Sequence**

Original Object (180°)

Mirror Object (45°)
Two Hypothetical Developmental Trajectories

Figure 2
Highlights

- Mental transformation is a centrally important characteristic of human cognition.
- On standard mental rotation tasks, many 4-year-olds perform near chance.
- In stark contrast, infants are able to discriminate objects from mirror images.
- Similar patterns of age discrepancies can be observed in other research domains.
- Mental simulation may be key to all of these domains.