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ABSTRACT

For one-month S&P 500 index options, Constantinides et al. (2009)
report widespread and substantial violations of stochastic dominance
bounds. According to the subsequent study of Constantinides et al.
(2011), the violations can be exploited to generate abnormal trading
profits. The reported mispricing, which is far more extreme than
known from the pricing kernel puzzle, calls into question that op-
tion markets meet the most basic requirements of rational pricing.
However, we find that index options on the S&P 500, EuroStoxx 50
and DAX are priced almost perfectly in line with stochastic domi-
nance bounds when adjusting for (a) the general level of option prices,
(b) conditional volatility and (c) put-call parity in order to determine
the appropriate (dividend-adjusted) underlying index level. Our re-
sults indicate that index option markets might be much more efficient
than previous literature suggests.
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1 Introduction

European index options seem to provide an ideal setting for option valuation:
their payoff function is simple, the underlying asset and the characteristics of its
(historical) price processes are well-known, and trading in these options has been
very active for many years. Despite this, empirical evidence on the market pricing
of index options is still puzzling. The ongoing debate centers around the questions
of whether options are generally too expensive, whether the smile is too steep
and which factors determine the cross-section of option returns.1 Here, “smile” or
“skew” refers to an illustration of the strike price pattern of option prices in terms
of implied volatilities.

A related but more fundamental question is whether option prices at least fulfill
the minimum requirement of respecting the stochastic dominance bounds (hence-
forth: SD bounds) put forth by Constantinides and Perrakis (2002). Strikingly,
Constantinides et al. (2009) (henceforth: CJP) report widespread and substantial
violations of stochastic dominance by one-month S&P 500 index options over the
period 1986 to 2006. The violations decrease in the 1988 to 1995 period, but then
increase in 1997 to 2003, remaining at a high level until the end of the sample
period. Observed deviations are large: scatterplots for 2000 to 2006 show quotes
that are widely dispersed around the SD bounds, partly with a majority of quotes
outside the bounds.2 The initial decrease followed by a substantial increase in
violations “is a novel finding and casts doubts on the hypothesis that the options
market is becoming more rational over time, particularly after the crash” (CJP,
1268f). However, definite conclusions are difficult to draw due to concerns about
data quality. The OptionMetrics Database used for 1997 to 2006 provides more
noisy data (end-of-day quotes) than the Berkeley Options Database used over the
1986 to 1995 period (minute-by-minute quotes and trades). Thus, the increase in
violations “may be due to the lower quality of the data” (CJP, 1247), although the
authors argue that the distribution of violations does not support this conjecture
(CJP, 1268).

These results have important implications for the understanding of option
markets in general. If index options are mispriced in this extreme way, the pricing
of more complex options on less well-known underlying assets will presumably
also be distorted. If the pricing quality of one of the most heavily traded options
deteriorates over time, it seems implausible to expect a positive learning curve in
other, less popular derivative markets. We might also draw the conclusion that
the limits of arbitrage are extremely tight, possibly due to indirect transaction
costs, low liquidity and other market frictions (Santa-Clara and Saretto, 2009).

1For the last question, see Constantinides et al. (2013). Literature on the other research questions
is briefly reviewed later.

2See CJP, Figure 3, Panel F (February 2000 to May 2003), where approximately three quarters of
the quotes lie outside the bounds.
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Otherwise, we would expect hedge funds and other investors to exploit and
eliminate substantial violations.

This paper reconsiders the question of whether index options violate SD bounds
and provides new insight into the nature of potential mispricing. We show that
index options on the S&P 500, EuroStoxx 50 and DAX are priced almost perfectly
in line with SD bounds when (a) considering conditional volatility, (b) adjusting
the bounds for the general level of option prices and (c) using put-call parity to
estimate the dividend-adjusted underlying index level. Condition (b) means that
the conditional volatility is adjusted such that the average at-the-money (ATM)
implied volatility lies in the middle of the bounds range. Under conditions (a) to
(c), more than 96% of option transactions lie within the bounds. The remaining
cases can naturally be explained by a slightly different shape of the one-month
index return distribution in times of market stress (e.g., after the bankruptcy of
Lehman Brothers in September 2008).

The SD bounds in our tests are affected by estimation errors. Therefore, the
failure of finding bound violations does not imply that no dominating option trades
exist. According to our results, if substantial mispricing is observed, it can be
attributed to deviations from the above conditions (a) to (c), which reflect either
estimation errors or “real” mispricing in the sense of irrational market behavior.
Our results suggest that index option prices are consistent with put-call parity
(condition (c)), but we do not address the question of whether the general level
of option prices is appropriate (condition (b)).3 Following CJP, we only examine
whether the shape of the skew fits into the SD bounds when the general level of
option prices is taken as given.4 Thus, our analysis is related to the line of research
that is concerned about the slope (as opposed to the level) of the smile, building on
the observation of Rubinstein (1994) and Jackwerth and Rubinstein (1996) that
out-of-the-money (OTM) puts are expensive compared to ATM puts. Jones (2006)
confirms that deep-OTM puts on S&P500 index futures are overpriced, generating
negative abnormal returns even after taking volatility and jump risk premia into
account. In contrast, Broadie et al. (2009) note that very high returns of deep-OTM
puts alone are not inconsistent with standard option valuation models because
individual option returns are extremely dispersed and highly skewed. Thus, they
propose a different test approach based on market-neutral option portfolios. The
main finding is that stochastic volatility alone is insufficient to explain returns
of S&P 500 futures options, but models including estimation risk and jump risk
premia are consistent with the data. In contrast to these studies, we focus on the

3Several studies show that the ATM implied volatility is an upward-biased predictor of realized
volatility (see, e.g., Jackwerth and Rubinstein, 1996). Other studies find evidence of a strongly negative
volatility risk premium (e.g., Chernov and Ghysels, 2000; Driessen and Maenhout, 2013; Santa-Clara
and Yan, 2010). Selling variance swaps therefore appears to be a profitable strategy, see Carr and Wu
(2009) and Hafner and Wallmeier (2007).

4CJP, 1266, note: “Since the bounds are adjusted by the implied volatility, [. . . ] we can draw
inferences about the shape of the skew but not about the general level of option prices.”
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more general concept of stochastic dominance without examining specific asset
pricing models.

We address only the part of the CJP study that analyzes the Constantinides
and Perrakis (2002) bounds. Two further tests of CJP examine if the empirical
pricing kernel is a decreasing function of the index return. Previous studies had to
reject this hypothesis, which gave rise to the pricing kernel puzzle (Aït-Sahalia and
Lo, 2000; Jackwerth, 2000; Rosenberg and Engle, 2002). The pricing kernel tests
of CJP rest on much more restrictive assumptions than the test of violations of the
Constantinides and Perrakis (2002) bounds. One additional assumption is that
there is at least one trader who is marginal in the entire cross section of option
prices instead of one option at a time. More importantly, intermediate option
trading is excluded or restricted to one intermediate point in time, which is a
severe restriction given the continuous trading of index options. This is one reason
why we do not replicate these specific tests. The more important reason, however,
is that we do not question the phenomenon of non-monotonic empirical pricing
kernels.5 Quite the contrary: it is easy to verify that the typical smile patterns
do not pass the pricing kernel test even if they fully respect the SD bounds of
Constantinides and Perrakis (2002). The pricing kernel is typically hump-shaped
with an increase around a final index level equal to the current level. This shape
is often found when the risk-neutral distribution is strongly left-skewed while the
objective distribution is more symmetrical. Therefore, one possible interpretation
is that the skew in option prices is too pronounced. However, this puzzle is subtle
compared to the bound violations reported in CJP and studied in this paper.

The next section reports the SD bounds analyzed in this paper. Section 3
presents our analysis of transaction data for SPX, ESX and DAX options. Section 4
compares our results with CJP and shows the impact of differences in the study
designs. Section 5 concludes.

2 Stochastic Dominance Bounds

Constantinides and Perrakis (2002) derive bounds on call and put options in a
multiperiod economy with intermediate trading and proportional transaction costs.
The bounds are based on the assumption that at least one marginal investor exists
whose utility of wealth is state-independent and who has a positive net exposure
to the market (monotonicity of wealth condition). The upper call price bound is6

c (St , t) =
1+ k
1− k

E
�

(ST − K)+ | St

�

RT−t
S

, (1)

5Beare and Schmidt (2014) provide recent evidence that this phenomenon can be exploited to
construct a portfolio of options whose return stochastically dominates the market return. This result
does not contradict our finding that the SD bounds of Constantinides and Perrakis (2002) hold.

6See Constantinides and Perrakis (2002), Proposition 1.
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where St is the stock price at time t, K the strike price, T the option’s time to
maturity, RS the expected stock return and k the (one-way) transaction cost rate
when buying and selling the index. The upper boundary of the put price, which is
generally less tight, is7

p (St , t) =
K

RT−t
+

1− k
1+ k

E
�

(K − ST )
+ − K | St

�

RT−t
S

, (2)

where R is the risk-free rate of return.
The lower bounds rely on the additional assumption that the investment

horizon of at least one marginal investor coincides with the option’s maturity
date. The lower bounds are then independent of transaction costs and related by
put-call parity:8

c (St , t) =
St

(1+ d)T−t −
K

RT−t
+

�

E
�

(K − ST )
+ | St

�

RT−t
S

�

, (3)

and

p (St , t) =
E
�

(K − ST )
+ | St

�

RT−t
S

(4)

= c (St , t) +
K

RT−t
−

St

(1+ d)T−t , (5)

with d as dividend yield. CJP assume a transaction cost rate of 50 basis points
(k = 0.005). In reality, transaction costs for the main indices are often smaller
because traders use futures as index trading instrument. For the main index
futures, one-way transaction costs are typically below 10 basis points, which
means that they do not strongly affect the option price bounds. For this reason, we
assume k = 0 in the empirical analysis, which has the advantage that the upper
bounds are related by put-call parity in the same way as are the lower bounds
(see Eq. (5)):

p (St , t) = c (St , t) +
K

RT−t
−

St

(1+ d)T−t . (6)

Therefore, in terms of implied volatility, the bounds are identical for calls and
puts. The assumption of zero transaction costs biases the results towards more
frequent and more substantial violations of the (upper) bounds and is, therefore,
conservative. For k = 0, the price range between the upper and lower bounds is

7See Constantinides et al. (2008), 584.
8See CJP, 1256; Constantinides and Perrakis (2002), Proposition 6; Constantinides and Perrakis

(2007), 112.
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determined by the market risk premium (RS vs. R):

c (St , t)− c (St , t)

= p (St , t)− p (St , t) =
K

RT−t
−

K
RT−t

S

. (7)

In the empirical analysis, we assume a market risk premium (RS − R) of 6%. This
is higher than the 4% premium of CJP, but well within the range of common
estimates for the market risk premium. In most months, both rates lead to nearly
identical results. In the few months with a small but discernible difference, market
volatility is typically high, which suggests that the market risk premium might
also be relatively high. The main conclusions are identical for a premium of 4%.

3 Violations of Stochastic Dominance Bounds: Evidence from
Transaction Data

3.1 Data and Methodology

3.1.1 Estimation of the Strike Price Profile of Implied Volatilities

For a study examining option mispricing, it is crucially important to measure
implied volatilities with great precision. Hentschel (2003, 788) describes the main
source of measurement error as follows: “For the index level, a large error typically
comes from using closing prices for the options and index that are measured 15 min
apart. This time difference can be reduced by using transaction prices, but such
careful alignment of prices is not typical.” To ensure synchronicity, we rely on
transaction prices. For SPX options, we use the concurrent S&P 500 index values
reported by CBOE in the trade records files. For ESX and DAX options, we derive
the appropriate index level from transaction prices of the corresponding index
futures. We match each option trade with the previous futures trade and require
that the time difference does not exceed 30 s. In fact, the median time span
between matched futures and option trades in 2014 is smaller than 200 ms.

Even with perfect matching, the index level might still be flawed because
it is not adjusted for dividends during the option’s lifetime. This is particularly
relevant for SPX and ESX options which are based on price indices, while DAX
is a performance index. Because dividend expectations of option traders are
not directly observable, following Han (2008), we use put-call parity to derive a
market estimate of the appropriate index adjustment.

More specifically, our procedure to measure implied volatilities is as follows
(see Hafner and Wallmeier, 2000, 2007). The matched index level Smt at time
m on day t is adjusted such that transaction prices of pairs of ATM puts and
calls traded within 30 s are consistent with put-call parity. The adjusted index
level is Sad j

mt = Smt + At , where At is the same value for all index levels observed
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Figure 1: Smile Profile and Put-Call Parity.

Description: The graphs show the smile for transactions in SPX options with a time to maturity of 30
calendar days on January 22, 2014. Black crosses: put options, blue circles: call options. Left graph:
implied volatilities based on synchronized intraday index levels provided in the trade files of CBOE.
Right graph: implied volatilities based on intraday index levels reduced by 3.62 index points.

Interpretation: The reduction by 3.62 reflects expected dividends until the maturity date. With
dividend-adjusted index levels, the smile profiles of call and put options coincide, which is consistent
with put-call parity.

during the day. Figure 1 illustrates this adjustment for trades of SPX options with
a time to maturity of 30 days on January 22, 2014 (for a similar example, see
Hafner and Wallmeier, 2000). The left graph shows implied volatilities based on
the unadjusted intraday index levels. In this graph, put-call parity appears to be
violated, with put options (black crosses) trading at higher implied volatilities
than call options (blue circles). However, when lowering all intraday index levels
by a constant of 3.62 points, the recomputed implied volatilities line up as shown
in the right graph. Note the conversion of three call options that initially appear
to have negative time values (shown with implied volatility of 0.00 in the left
graph); after the adjustment, they perfectly fit into the smile profile. The situation
is similar on all days of our sample period and for all three index options, i.e., the
adjusted smile profiles of put and call options always coincide and negative time
values are no longer observed.9

9We ignore trades in SPX options in the first minute of trading (8.30 a.m. to 8.31 a.m.) each
day because at this time, the index level sometimes appears to still include outdated stock prices. For
example, on December 17, 2014 options appear to be priced on the basis of an underlying index level
that is 4.5 points above the reported index level.
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For SPX options, the adjustment is always negative, which is consistent with
nonzero monthly expected dividend payments. Thus, without the adjustment,
put options would always appear to be more expensive than call options. Our
adjustments closely mirror the series of actual dividend payments, which cor-
roborates our interpretation that the adjustments capture anticipated dividend
discounts.10 Also in line with this interpretation, we find that, typically, no adjust-
ment is necessary for options on the performance index DAX. For ESX options,
the adjustment is mostly negligible except in March and April. In these months,
the option maturity months (April and May) are different from the next maturity
date of the futures (June). Between the two maturity dates, most EuroStoxx 50
firms pay out dividends, which are therefore considered differently in options and
futures prices. For this reason, the use of futures prices instead of index levels
does not circumvent the problem of dividend adjustments.

On some days, at-the-money SPX options show an unusual implied-volatility
pattern. In the Appendix, we give examples and discuss how we address the issue.
The pattern arises from trades that are recorded with exactly the same option
price–often an integer value–at different intraday levels of the underlying index.
Our explanation is that these trades are part of a combined option strategy such as
a collar (index futures plus long put plus short call).11 In such a case, buyer and
seller agree upon a price for the package (e.g., $1 collar price) without specifying
the component prices. The reporting system, however, allows only simple put and
call option trades. Therefore, the collar price has to be decomposed. To simplify
the entry, an integer value is often used for one price component. For example, a
collar price of $1 might be recorded as $34 for the embedded long put and $33 for
the embedded short call. When the collar price decreases to $0.50, the recorded
put price might be kept constant at $34 while the call price is adjusted to $33.50
or the put price is reduced to $33.50 while the call price is left at $33. The bottom
line is that the recorded prices are not informative if their connection is lost. The
CBOE trade files do not allow for identifying combined trades. Therefore, we
apply a simple identification rule that removes the pattern reasonably well (see
details in the Appendix). For our study, this issue is of minor importance because
the phenomenon is clearly visible on only a few days. Our results and conclusions
remain the same without any attempt to remove these transactions.

10For 2010 to 2014, the series of dividends for the S&P 500 index was: 23.12; 26.02; 30.44;
34.99; 39.44 (source: Bloomberg). Our cumulative index adjustments for the same years are (absolute
values): 24.96; 27.96; 29.62; 30.20; 38.43.

11A collar based on ATM options provides a riskless position. This trade can be used to exploit
possible deviations of ATM options from put-call parity, thereby enforcing an appropriate parity
relationship. In the following, we use the term “collar” for the embedded options without considering
the index investment.
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3.1.2 Study Design

Following CJP, we consider options with a time to maturity of 30 calendar days.12

In each month, there is exactly one day (a Wednesday) with this time to maturity.
Thus, the sample period from 1995 to 2014 for the DAX option and from 2000 to
2014 for the SPX and ESX options consists of 240 and 180 trading days, respectively.
For SPX options, the underlying index values are missing in the trade files for May
and June 2003 so that our final SPX sample includes 178 trading days.

The SD bounds are based on an assumed probability distribution of the under-
lying asset. Thus, observed violations can be explained either by option mispricing
or by errors in estimating the probability distribution. In principle, any violation
could be eliminated by picking the “right” distribution. To avoid this type of data
snooping, we adopt the approach of CJP to estimate the shape of the unconditional
distribution as the smoothed historical distribution of index returns over 1972 to
2006. For ESX, we use the shorter period 1987 to 2006 because the index was
introduced only in 1998 and calculated backwards up to 1987. The historical
distribution includes all intervals of 21 trading days during the estimation period.
The conditional distributions are then obtained by scaling returns to be consis-
tent with the current volatility level. More specifically, the volatility parameter
is chosen such that the observed ATM implied volatility lies in the middle of the
bounds implied by the conditional distribution. In this way, we control for the
general level of option prices so that violations of stochastic dominance can be
clearly attributed to the shape of the smile pattern. Following CJP, we de-mean
the sample returns and add back the risk-free rate plus the market risk premium.

Figure 2 (left graph) shows the conditional distribution of log DAX returns
over 21 trading days, the smoothed distribution and the normal distribution with
the same volatility on the last day of the sample period (December 17, 2014).
The distribution is skewed to the left (skewness of −1.01) and leptokurtic (excess
kurtosis of 1.54). For the same day, the graph on the right shows the scatterplot of
implied volatility versus moneyness for all trades in one-month DAX options, where
moneyness is defined as the ratio of discounted strike price and contemporaneous
index level. All trades occur within the SD bounds indicated by the outer lines.
The graph also shows the estimated regression line of the regression

IV = b0 + b1M + b2M2 + b3DM3, (8)

where the moneyness measure M is defined as the logarithmic ratio of discounted
strike price and contemporaneous index level, divided by the square root of time
to maturity, bi are regression coefficients and D is a dummy variable which is one

12In the data section, CJP state that the retained options have a time to expiration of 30 days
(p. 1257), in Appendix B the time to expiration is specified as 29 days (p. 1274).
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Figure 2: Identifying Violations of Stochastic Dominance Bounds.

Description: The left graph shows the conditional one-month DAX return distribution. The right
graph shows the corresponding stochastic dominance bounds and trades of DAX options with 30 days
time to maturity on December 17, 2014.

Interpretation: On this day, all transactions lie within the bounds (no violations).

for M > 0 and zero otherwise.13 The last term is introduced to capture possible
asymmetries of the smile profile for positive and negative moneyness. The mean
adjusted R2 of this regression model is higher than 95% for SPX, ESX and DAX
options. Because the regression line precisely reflects the smile profile, we will
refer to its position instead of single trades in one part of the empirical analysis.

The setup of our empirical study is as follows. Our sample days are those on
which index options have a time to maturity of exactly 30 calendar days (one
day in each month). For each sample day, we estimate implied volatilities and SD
bounds as illustrated in the right graph of Figure 2. We analyze this information in
three steps. First, by pooling all sample days together, we give an overview of the
number and size of bound violations by option type (put or call) and moneyness
range. Second, we examine the occurrence of violations over time. Third, we take
a closer look at the days with the most significant violations.

3.2 Overview of Results

Tables 1 to 3 report summary statistics for the pricing of SPX options (2000 to
2014), DAX options (1995 to 2014) and ESX options (2000 to 2014). In each
case, Panel A includes all trades, while Panels B to D are based on subsamples
defined by different moneyness intervals. The upper part of each panel shows the

13See Hafner and Wallmeier (2007). Note that the time-to-maturity adjusted moneyness measure
M is only used in this regression. The smile graphs in this paper are based on moneyness defined as
the ratio of discounted strike price and index level.
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Puts Calls All

Panel A: All Transactions

N In % N In % N In %

Upper violation 4,880 2.8 1,390 1.1 6,270 2.1
Inside bounds 166,243 96.1 128,288 97.1 294,531 96.5
Lower violation 1,887 1.1 2,476 1.9 4,363 1.4
Sum 173,010 100.0 132,154 100.0 305,164 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0133 3.4 0.0144 4.0 0.0136 3.5
Lower deviation IV 0.0156 5.5 0.0131 5.2 0.0142 5.3

Panel B: 0.9≤Moneyness< 0.95

N In % N In % N In %

Upper violation 2,159 3.9 168 5.5 2,327 4.0
Inside bounds 53,311 96.0 2,793 90.8 56,104 95.8
Lower violation 46 0.1 115 3.7 161 0.3
Sum 55,516 100.0 3,076 100.0 58,592 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0147 3.3 0.0164 4.0 0.0148 3.4
Lower deviation IV 0.0075 2.7 0.0264 10.6 0.0210 8.3

Panel C: 0.95≤Moneyness< 1.0

N In % N In % N In %

Upper violation 2,330 2.6 573 1.7 2,903 2.4
Inside bounds 85,655 96.9 31,917 96.4 117,572 96.8
Lower violation 392 0.4 619 1.9 1,011 0.8
Sum 88,377 100.0 33,109 100.0 121,486 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0114 3.1 0.0129 4.0 0.0117 3.3
Lower deviation IV 0.0167 6.7 0.0193 8.9 0.0183 8.1

Panel D: 1.0≤Moneyness≤ 1.05

N In % N In % N In %

Upper violation 391 1.3 649 0.7 1,040 0.8
Inside bounds 27,277 93.7 93,578 97.5 120,855 96.6
Lower violation 1,449 5.0 1,742 1.8 3,191 2.6
Sum 29,117 100.0 95,969 100.0 125,086 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0172 5.5 0.0153 4.1 0.0160 4.6
Lower deviation IV 0.0155 5.2 0.0101 3.5 0.0126 4.3

Table 1: SPX Option Pricing with Respect to Stochastic Dominance Bounds, 2000 to 2014.

Description: For put and call options in different moneyness classes, the table reports the proportion
and size of bound violations.

Interpretation: 96.5% of all transactions lie within the bounds. The remaining deviations are small.
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Puts Calls All

Panel A: All Transactions

N In % N In % N In %

Upper violation 2,012 1.4 568 0.5 2,580 1.0
Inside bounds 142,800 97.4 114,478 98.8 257,278 98.0
Lower violation 1,827 1.2 819 0.7 2,646 1.0
Sum 146,639 100.0 115,865 100.0 262,504 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0104 2.4 0.0078 2.3 0.0098 2.4
Lower deviation IV 0.0058 2.4 0.0064 2.0 0.0060 2.3

Panel B: 0.9 ≤ Moneyness < 0.95

N In % N In % N In %

Upper violation 923 2.1 98 2.8 1,021 2.1
Inside bounds 42,673 95.0 3,325 94.7 45,998 95.0
Lower violation 1,326 3.0 89 2.5 1,415 2.9
Sum 44,922 100.0 3,512 100.0 48,434 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0123 2.5 0.0111 2.2 0.0122 2.5
Lower deviation IV 0.0052 2.3 0.0049 2.4 0.0051 2.3

Panel C: 0.95 ≤ Moneyness < 1.0

N In % N In % N In %

Upper violation 922 1.2 185 0.7 1,107 1.0
Inside bounds 78,915 98.7 27,034 99.0 105,949 98.8
Lower violation 104 0.1 92 0.3 196 0.2
Sum 79,941 100.0 27,311 100.0 107,252 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0093 2.3 0.0071 1.9 0.0089 2.3
Lower deviation IV 0.0035 1.4 0.0077 2.4 0.0055 1.9

Panel D: 1.0 ≤ Moneyness ≤ 1.05

N In % N In % N In %

Upper violation 167 0.8 285 0.3 452 0.4
Inside bounds 21,212 97.4 84,119 98.9 105,331 98.6
Lower violation 397 1.8 638 0.8 1,035 1.0
Sum 21,776 100.0 85, 042 100.0 106,818 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0063 2.0 0.0070 2.5 0.0067 2.3
Lower deviation IV 0.0083 3.0 0.0064 1.9 0.0072 2.3

Table 2: DAX Option Pricing with Respect to Stochastic Dominance Bounds, 1995 to 2014.

Description: For put and call options in different moneyness classes, the table reports the proportion
and size of bound violations.

Interpretation: 98.0% of all transactions lie within the bounds. The remaining deviations are small.
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Puts Calls All

Panel A: All Transactions

N In % N In % N In %

Upper violation 766 0.4 294 0.3 1,060 0.4
Inside bounds 173,080 96.6 108,200 99.4 281,280 97.6
Lower violation 5,414 3.0 311 0.3 5,725 2.0
Sum 179,260 100.0 108,805 100.0 288,065 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0066 1.7 0.0052 1.5 0.0062 1.6
Lower deviation IV 0.0028 1.2 0.0057 1.9 0.0030 1.2

Panel B: 0.9≤Moneyness< 0.95

N In % N In % N In %

Upper violation 248 0.4 17 2.6 265 0.4
Inside bounds 65,392 92.4 606 92.1 65,998 92.4
Lower violation 5,142 7.3 35 5.3 5,177 7.2
Sum 70,782 100.0 658 100.0 71,440 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0065 1.4 0.0079 1.8 0.0066 1.4
Lower deviation IV 0.0026 1.1 0.0041 1.6 0.0026 1.1

Panel C: 0.95≤Moneyness< 1.0

N In % N In % N In %

Upper violation 418 0.4 78 0.5 496 0.4
Inside bounds 94,222 99.4 17,104 99.3 111,326 99.4
Lower violation 121 0.1 45 0.3 166 0.1
Sum 94,761 100.0 17,227 100.0 111,988 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0069 1.9 0.0065 1.7 0.0069 1.8
Lower deviation IV 0.0031 1.1 0.0043 1.4 0.0034 1.2

Panel D: 1.0≤Moneyness≤ 1.05

N In % N In % N In %

Upper violation 100 0.7 199 0.2 299 0.3
Inside bounds 13,466 98.2 90,490 99.5 103,956 99.3
Lower violation 151 1.1 231 0.3 382 0.4
Sum 13,717 100.0 90,920 100.0 104,637 100.0

Mean In % Mean In % Mean In %

Upper deviation IV 0.0053 1.5 0.0044 1.4 0.0047 1.5
Lower deviation IV 0.0091 2.9 0.0063 2.0 0.0074 2.3

Table 3: ESX Option Pricing with Respect to Stochastic Dominance Bounds, 2000 to 2014.

Description: For put and call options in different moneyness classes, the table reports the proportion
and size of bound violations.

Interpretation: 97.6% of all transactions lie within the bounds. The remaining deviations are small.
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number and the percentage of trades inside and outside the stochastic dominance
bounds. The lower part shows the mean size of the deviations in terms of implied
volatility (column “Mean”) and as a percentage of the upper or lower bound
(column “In %”).

As seen in Panel A of Table 1 for SPX options, 305,164 transactions with
moneyness between 0.9 and 1.05 are included for the sample period of 178 days.
Puts are more often traded than calls (share of 57%). The vast majority of put
and call transactions (96.1% and 97.1%) are located within the bounds. Among
the remaining trades, lower bound violations occur slightly more often than upper
bound violations. The mean of the lower deviations is 1.42 percentage point,
corresponding to 5.3% of the lower bound implied volatility. The upper bound
deviations tend to be even smaller.

Panels B to D show that trading in low moneyness options is heavily concen-
trated on puts (55,516 of 58,592 transactions in Panel B), while call option trades
prevail at high moneyness levels (95,969 of 125,086 transactions in Panel D).
OTM puts more often violate the bounds than OTM calls (4.0% vs. 2.5%). In the
middle moneyness interval (Panel C), the proportion of trades inside the bounds
is almost the same for puts (96.9%) and calls (96.4%).

The empirical results are very similar for DAX and ESX options, as seen in
Tables 2 and 3. The DAX (ESX) sample includes 262,504 (288,065) transactions14

on 240 (180) days from 1995 to 2014 (2000 to 2014), of which 98.0% (97.6%)
are located within the bounds. The size of the remaining bound violations is even
smaller than for SPX options. In all, index option prices generally appear to be
very well aligned with SD bounds.

Due to the similarity of the index options in Europe (DAX and ESX), we
hereafter omit the one with the shorter sample period, which is the ESX option.
Thus, we report the following detailed results only for SPX and DAX options.

3.3 Timeline of Violations

To illustrate the periods in which significant deviations from the SD bounds occur,
we resort to the estimated regression function of model (8) as it provides a precise
description of the smile pattern. More specifically, we analyze the position of
the regression function with respect to the upper and lower SD bounds at the
two moneyness levels 0.9 and 1.05. We do not choose more extreme moneyness
values because, outside this range, trading becomes thin and the bounds are often
uninformative (lower bounds zero and upper bound for low moneyness very high).

14Trading in ESX options was thin during the first 5 years of the product’s lifetime but then increased
substantially. Since 2008, there are more transactions in ESX than DAX options. In 2014, the number
of transactions in ESX options was even four times higher than that of DAX options. In spite of this
development, the market for DAX options remains active with more than 1,000 transactions per sample
day in 2014.
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The relative position of the regression function with respect to the bounds is:

relPos(M∗) =
IVR(M

∗)− LB(M∗)
UB(M∗)− LB(M∗)

, (9)

where M∗ ∈ {0.9,1.05} is moneyness, IVR (M∗) is the implied volatility of the
estimated regression function (8) at moneyness M∗, and UB (M∗) and LB (M∗) are
the upper and lower bounds corresponding to moneyness M∗. The SD bounds are
respected if 0 ≤ relPos (M∗) ≤ 1. The cases relPos (M∗) < 0 and relPos (M∗) > 1
indicate violations of the lower and upper bound, respectively.

Figure 3 illustrates the position of the smile pattern over time for DAX options
(upper graph) and SPX options (lower graph). Both graphs show the measure
relPos(M∗) for M∗ = 0.9 in the upper panel and for M∗ = 1.05 in the middle panel.
The bottom panel shows the ATM implied volatility as an indicator of the degree
of uncertainty in the market.

The trajectories for DAX and SPX options are remarkably similar. Most of the
time, relPos(M∗) moves within the bounds of 0 to 1. Six times, the upper bound of
OTM put options (M∗ = 0.9) is violated or prices come close to the upper bound.
These six events, which are marked by vertical lines in Figure 3, refer to:

1. the Russian crisis of September/October 1998;

2. the September 11, 2001 terrorist attacks;

3. the sharp market decline of September 2002;

4. the financial crisis after the bankruptcy of Lehman Brothers (October/
November 2008);

5. the high level of uncertainty in May 2010 related to the European sovereign
debt crisis;

6. market movements in October 2011 related to the European sovereign debt
crisis.

In the middle panel for M∗ = 1.05, these events are recognizable as downward
swings towards the lower bound. If we compare both panels, it becomes obvious
that the skew profile became more pronounced during each crisis, with OTM puts
priced near the upper bound and OTM calls priced near the lower bound. It is
interesting to note that option prices stayed well in-between the SD bounds in
other turbulent months during the sample period, in particular the Asian crisis of
1997, the end of the Dot-com boom in 2000 and the Iraq war in 2003.

Apart from the crisis months, the upper panel indicates that OTM puts are
mostly priced close to the lower bound (DAX) or near the middle of the range
(SPX), which suggests that the smile is generally not too steep, given the historical
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Figure 3: Position of the Smile of DAX and SPX Options with Respect to Stochastic Dominance Bounds
Over Time.

Description: For each option, the upper two panels show the position of the smile regression with
respect to stochastic dominance bounds at moneyness 0.9 and 1.05. The bottom panel shows the ATM
implied volatility. The vertical lines indicate crisis events. Data are monthly, with one sample day per
month. The options have a time to maturity of 30 days.

Interpretation: Most of the time, the smile profile is located within the bounds. In times of market
stress, the skew tends to become steeper so that it may breach the upper bound at a low moneyness
level and the lower bound at a high moneyness level.
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distribution of one-month index returns. During the second half of 2000, the DAX
smile is almost flat so that the lower bound is slightly violated.15 We show more
details about this phase in the next section, after a closer look at the crisis events.

3.4 A Closer Look at the Most Significant Deviations

3.4.1 Russian Crisis, 9/11, Lehman Bankruptcy, European Sovereign Debt Crisis

When excluding eight months related to the six crisis events presented in sec-
tion 3.3, more than 98% of all transactions (SPX and DAX) lie within the SD
bounds and the remaining transactions deviate by less than 0.7 percentage points
of implied volatility, on average. Thus, almost all observed violations are related
to the crisis events. We illustrate the corresponding smile patterns for the most
significant events in more detail in Figures 4 (SPX) and 5 (DAX). The left graph in
each row refers to the month prior to the crisis, the right graph to the crisis month
itself. The four rows represent the Russian crisis of 1998 (only DAX), the 9/11
attacks, the collapse of Lehman Brothers and the European sovereign debt crisis.

In each event, implied volatilities jump upwards (higher level of the skew in
the right graphs compared to the left). The structure of implied volatilities across
moneyness remains highly regular in the crisis months, but the skew becomes
steeper, and at both ends it protrudes beyond the bounds range. Therefore, OTM
puts appear to be too expensive and OTM calls too cheap, but the deviations remain
so small that a higher-than-usual downside risk could easily explain the observed
patterns. Given the uncertainty about the conditional index return distribution
it is natural to find a certain number of deviations from bounds which are based
on a specific distributional assumption. In times of market stress, skewness and
kurtosis are presumably different than on average.16

It is also important to note that we still lose precision in our analysis by holding
conditional volatility constant during the day. By updating volatility following
intraday changes of ATM implied volatility, the number of violations would further
decrease. Figure 6 illustrates the intraday changes of the SPX smile pattern for the
first sample day after the bankruptcy of Lehman Brothers (October 22, 2008, upper
panel) and the last day of our sample period (December 17, 2014, lower panel).
For October 22, 2008, the graph on the right picks out the transactions between
2 p.m. and 3 p.m. and highlights transactions with strikes 850 and 900. Implied
volatilities in this hour were much higher than average implied volatilities during
the day so that most trades lie outside the SD bounds representing the average
situation of the day. The highlighted observations for a constant strike price are
upward sloping. For a given strike, increasing moneyness reflects a falling index

15We leave out the first few months of DAX option trading at the beginning of 1995, which were
characterized by very low volatility and almost no skew. These deviations are very small in terms of
implied volatility.

16Kozhan et al. (2013) show that skew risk is closely related to variance risk.
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Figure 4: Smile Profiles of SPX Options Before and After Crisis Events.

Description: The left graphs show the smile profiles in the month before the crisis event, the right
graphs the first smile profile affected by the crisis event. The three rows represent the 9/11 attacks,
the collapse of Lehman Brothers and events related to the European debt crisis.

Interpretation: In times of market stress, the smile profile shifts upwards and becomes steeper.
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Figure 5: Smile Profiles of DAX Options Before and After Crisis Events.

Description: The left graphs show the smile profiles in the month before the crisis event, the right
graphs the first smile profile affected by the crisis event. The four rows represent the Russian crisis of
1998, the 9/11 attacks, the collapse of Lehman Brothers and events related to the European debt crisis.

Interpretation: In times of market stress, the smile profile shifts upwards and becomes steeper.
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Figure 6: Illustration of Intraday Movements of the Smile Pattern.

Description: The upper graphs show the smile profiles and stochastic dominance bounds for SPX
options on October 22, 2008, which is the first sample day affected by the bankruptcy of Lehman
Brothers, and the lower graphs show the smile on December 17, 2014, which is the last day of our
sample period. The right upper graph picks out 1 h on October 22, 2008, and highlights trades with
two particular strike prices. The right lower graph highlights trades on December 17, 2014, with strike
prices from 1,850 to 2,050 in steps of 50.

Interpretation: For a given strike, implied volatilities are upward sloping with respect to moneyness.
This indicates that the smile shifts upwards when the index falls, and vice versa. Adjusting the bounds
to the intraday volatility level would further reduce bound violations.

level, which in turn is associated with higher implied volatilities. Typically, the
intraday shifts of the smile pattern are almost parallel (see Wallmeier, 2015). This
can also be seen in the lower right graph for December 17, 2014, which depicts
all daily transactions and highlights strikes from 1,850 to 2,050 in steps of 50.
Again, the upward sloping patterns for a given strike indicate parallel shifts of the
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smile in an inverse relationship to the index level. The observed violations would
mostly disappear when adjusting the bounds to the changing intraday volatility
level. Given these considerations, we interpret the empirical evidence as almost
perfectly in line with SD bounds.

In a related paper on the pricing of American-type S&P 500 futures options,
Constantinides et al. (2011) take estimation errors of the return distribution into
account so that stochastic dominance in a strict sense can no longer be identified.
However, the bounds can still serve as a means to identify potential mispricing.
Constantinides et al. (2011) find that a corresponding trading strategy actually
provides significant abnormal returns. In our case, as Figures 4 and 5 illustrate,
such a strategy would imply selling OTM put options in the most extreme market
situations. This strategy will be high-risk, no matter how it is implemented. To
make things worse, during the sample period of 20 years, there are fewer than ten
independent trading opportunities, namely the crisis events, with implied volatility
deviations above one percentage point. In this setting, it is clearly beyond the
power of any statistical test to find evidence of significant abnormal returns. Thus,
in our analysis, observed violations are far too small and too rare to be able to
devise a profitable trading strategy.

3.4.2 Periods Without a (Pronounced) Skew

In the second half of 2000 until February 2001, the lower bound of OTM puts
is violated for DAX options (see upper panel in Figure 3). Figure 7 illustrates
the transactions from May, June and August 2000. In the scatterplot for May
2000, OTM puts are priced close to the lower bound, but all trades stay within the
bounds range. Over the next three months, volatility decreases further and the
smile continues to flatten out. The OTM put premium appears to be too low but
again, deviations are small. One obvious possibility is that market participants
in this period expected the return distribution over the next month to be close to
normal, so that the implied volatilities were almost flat.

4 Comparison with Constantinides et al. (2009)

To understand why the results of CJP are so different, we replicate their analysis
for S&P 500 options over the last two subperiods (February 2000 to May 2003;
June 2003 to May 2006). As in CJP, our data are end-of-day bid and ask quotes for
call and put options from OptionMetrics. We consider only options with positive
trading volume on that day.

The results of CJP are shown in their Figures 3 and 4. In Figure 4 of CJP for
2003 to 2006, three properties stand out: First, there is a large number of bound
violations. Second, the pattern is strikingly irregular compared to smile graphs
shown in this paper so far; in particular, a cluster of observations with moneyness
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Figure 7: Flattening Smile of DAX Options in the Second Half of 2000.

Description: The graphs show three months with an almost flat smile profile.

Interpretation: Unlike the typical situation in most other months, the risk-neutral index return
distribution is almost symmetrical. As a consequence, the lower bound is slightly violated at low
moneyness levels.

between 0.95 and 1 and implied volatility below 10% do not seem to fit into
familiar smile patterns. Third, there are many cases of arbitrage violations in
which implied volatility could not be computed (marked on the horizontal axis).

We find that these three properties disappear when (1) put-call parity is
considered, and (2) the bounds are adjusted to conditional volatility. In the
following, we give further details on these two differences of our analysis compared
to CJP.

Put-Call Parity. Settlement data for option prices and index levels are typically not
perfectly synchronous. In addition, the index level has to be adjusted for expected
dividend payments during the option’s lifetime.17 Small adjustment errors will
produce substantial errors in implied volatilities. The standard approach is to
infer the underlying index level from put-call parity (see, e.g., Aït-Sahalia and
Lo, 1998; Binsbergen et al., 2012; Chen and Xu, 2014; Fan and Mancini, 2009).
CJP, however, attempt to determine the interest rate based on put-call parity.18

We argue in favor of an implied index level rather than an implied interest rate
because measurement error in the index level is much more likely to occur (owing
to timing mismatches and imprecise dividend estimates) than measurement error

17CJP infer the closing index levels from closing futures prices. In this way, the index level is
adjusted for expected dividends until the futures maturity date. In some months, a mismatch occurs
because the maturity dates of options and futures deviate (e.g., option maturity April, next future
maturity June).

18For data from the Berkeley Options Database (1986 to 1995), CJP “compute implied interest
rates embedded in the European put-call parity relation” (p. 1273). For data from the OptionMetrics
Database, the authors “cannot arrive at a consistently positive interest rate implied by option prices
[. . .] and use T-bill rates instead” (p. 1274). In a more recent paper studying SPX options from 1986 to
2012, Constantinides et al. (2013) write: “Since we believe that put-call parity holds reasonably well
in this deep and liquid European options market, we use the put-call parity-implied interest rate as
our interest rate in the remainder of the paper and for further filters” (Appendix B, p. 253).
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in the appropriate interest rate. In addition, the impact of measurement errors in
the index level on estimated implied volatilities is much larger than the impact of
errors in the interest rate.

Figure 8 illustrates our approach for the last day of the sample period of CJP,
which is May 17, 2006. The scatterplots are similar to Figure 1 for transaction data.
The left graph shows the smile pattern based on the closing index level (1,270.32),
the middle graph shows implied volatilities provided by OptionMetrics,19 and the
right graph shows the smile for the underlying index level that is consistent with
put-call-parity (1,264.10). The differences are large, especially when only call
options are included, as in CJP.20 The situation is similar on the other sample days:
when the index level is determined such that put-call parity holds for ATM options,
the implied volatilities of put and call options coincide over the full range of the
smile profile.21

With our approach to put-call parity, we obtain modified versions of Figures 3
and 4 in CJP, which are shown in the upper two graphs of Figure 9. For moneyness
below (above) 1, we use bid and ask quotes of put (call) options. A comparison
of our scatterplot for the period 2003 to 2006 (upper right graph of Figure 9)
with Figure 4 in CJP reveals that the irregularities and arbitrage violations have
disappeared.22

19The separation of put and call options in the middle graph of Figure 8 is noteworthy because
OptionMetrics actually assumes that put-call parity holds (see OptionMetrics Ivy DB File and Data
Reference Manual Version 2.5, Rev. 5/5/2005, p. 28: “For dividend-paying indices, . . . put-call parity
relationship is assumed, and the implied index dividend is calculated . . .”). However, OptionMetrics uses
two simplifying assumptions: (1) compound interest is linearized; (2) the dividend yield is assumed to
be constant over the whole range of option maturities available. For the 1-month options considered
here, assumption (2) introduces a non-negligible error if the expected dividends for the next month
do not correspond to the average expected dividend yield up to the longest option maturity. Whenever
the expected dividends over the next month are above (below) average, the implied volatilities of puts
will be higher (lower) than those of calls. This bias could easily be avoided by applying put-call parity
to each option maturity separately and, in this way, allowing for a time-changing dividend yield.

20The distorted patterns for calls in the left and middle panels of Figure 8 are characterized by:
inconsistent quotes (marked on the x-axis); partly decreasing implied volatilities for moneyness
between 0.95 and 1; and an overall flat pattern. These characteristics are present in CJP but not in our
analysis. CJP state: “In Figure 2, panels B to G dispel another common misconception, namely, that
the observed smile is too steep after the crash. In fact, panel G illustrates that there is hardly a smile in
the 2003 to 2006 period.” We find a significant smile in each month, as in the right panel of Figure 8.

21More specifically, the put-call parity-consistent underlying index level for a given trading day is
determined as follows: For each strike Ki with 0.95≤ Ki ≤ 1.02, we define Ai = (Ci−Pi)+Ki ·exp(−rT ),
where Ci is the mid quote for a call option with strike Ki , Pi is the corresponding put option mid quote,
r is the riskless rate of return and T the options’ time to maturity. We use the mean Ai value as the
adjusted underlying index level. All implied volatilities for puts and calls are based on this adjusted
level.

22In this respect, our study is similar to Battalio and Schultz (2006) who find that most of the
apparent violations of put-call parity in Internet stocks in the 1999 to 2000 period disappear when
carefully analyzing high-quality option data.
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Figure 8: Smile of S&P500 Options on May 17, 2006 (Time to Maturity: 30 Days).

Description: Option values are midpoints of bid and ask quotes. Left panel: implied volatilities based
on the closing index level of 1,270.32. Middle panel: implied volatilities provided by OptionMetrics
(Option Price Files). Right panel: implied volatilities based on an adjusted underlying index value of
1,264.10; the adjustment of −6.22 corresponds to −0.49% of the closing index level.

Interpretation: An index adjustment is necessary to account for dividends and a potential timing
mismatch. With this adjustment, the smile profiles of put and call options coincide, which is consistent
with put-call parity.

Conditional Volatility. Following the bounds analysis in CJP, we adjust the bounds
to the implied volatility level so that the test is on the shape of the skew instead of
its level: “Since the bounds are adjusted by the implied volatility, irrespective of
whether this volatility is rational or not, we can draw inferences about the shape
of the skew but not about the general level of option prices” (CJP, 1266). However,
while CJP adjust conditional volatility on a monthly basis in another part of the
paper, in this part on SD bounds, conditional volatility is set equal to the average
implied volatility over subperiods of up to 3 years. Within these subperiods, the
conditional volatility and the SD bounds are assumed to be constant.

This assumption induces many apparent bound valuations because volatility
varies considerably over such an extended period, which can be seen in the two
lower graphs of Figure 9. The lines show the estimated smile regressions for
each month in the sample period (left graph: 2000 to 2003, right graph: 2003
to 2006).23 The dotted (red) lines show bounds computed as in CJP (based on
average volatility). It is apparent from the almost parallel skew profiles that the

23The regression function is the same as in Section 3.1. Implied volatilities (dependent variable)
are based on mid quotes. We include all call and put options over the moneyness range from 0.9 to
1.05.
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Figure 9: Replication of Figures 3 and 4 in CJP.

Description: The upper graphs show implied volatilities based on bid and ask quotes of out-of-the
money options (puts: moneyness≤ 1, calls: moneyness> 1). The underlying index level is adjusted
such that put-call parity holds for the mid quotes. The lower graphs show the corresponding smile
regression lines for the months of the sample period. The red dotted lines show bounds based on an
average conditional volatility, as in CJP.

Interpretation: With our approach, negative time values disappear and the smile profiles become
very regular. It is crucial to consider conditional volatility with daily updating.

volatility level shifted substantially during the subperiods, particularly from 2000
to 2003. Because the bounds used in CJP are not adjusted accordingly, many upper
and lower deviations are observed. CJP state that “The figures provide a clearer
picture. [. . .] The decrease in violations over the 1988 to 1995 postcrash period
[. . .] is followed by a substantial increase in violations over 1997 to 2003 [. . .].
This is a novel finding and casts doubts on the hypothesis that the options market
is becoming more rational over time” (p. 1268f). However, the higher incidence
of apparent violations over 2000 to 2003 is mainly because volatility varied more
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strongly over this period so that the smile moved out of the average bounds range
(see, e.g., the high implied volatilities after the September 11 attacks).

Results. Combining our approach to put-call parity with our conditional volatility
estimate, we obtain the smile profiles shown in Figures 10 and 11 for the 3-year
period from 2003 to 2006 (last subperiod in CJP). The implied volatilities are based
on midpoints of bid and ask quotes, and the graphs include call and put options.
We also include the smile regression line according to Eq. (8). As in Section 3,
we use the conservative assumption of zero transaction costs and assume a risk
premium of 6%. Again, the unconditional distribution is the smoothed historical
distribution of S&P 500 returns for 1972 to 2006. As before in our transaction
analysis, we choose conditional volatility such that the ATM implied volatility lies
in the middle of the bounds range.24 This estimate guarantees that we reproduce
the general level of option prices, which is in the spirit of minimizing the incidence
of violations. Actual violations will be more frequent if options are generally too
expensive, which is an issue we do not analyze.

We find that almost all smile profiles fit perfectly into the bounds range. In fact,
Figures 10 and 11 reveal that not a single violation is observed in 36 consecutive
months from 2003 to 2006 applying our approach on the CJP data. In all, from
January 1997 to May 2006 (113 months), we find violations of SD bounds in 5
months affected by severe market stress (August, September, October, December
1998 and September 2001; see similarly the first two events in Figure 5 for
transaction data).

Bound Violations in Constantinides et al. (2011). In a subsequent study, Constan-
tinides et al. (2011) (CCJP) address the concern that the reported violations in
CJP do not account for potential errors in the estimation of the SD bounds.25 The
authors examine the significance of bound violations for American-type S&P 500
futures options from 1983 to 2006. Conditional volatility is updated on a daily
basis. In one model, it is adjusted to the implied volatility level so that the general
level of option prices is considered. Even in this setting, bound violations are still
frequent; in particular, 30.5% of all call bid quotes in the moneyness range 1.01 to
1.03 and 15.2% of call bid quotes with moneyness between 0.99 and 1.01 violate
the upper SD bound (see CCJP, Table II, p. 1419).

This result appears to contradict our previous findings for SPX options. An
obvious question is whether the difference can be explained by the fact that
the options are not exactly the same. We argue that this is not the case. It
is true that the option studied in CCJP differs in two characteristics from the
SPX option: (1) the underlying asset (S&P 500 futures contract vs. S&P 500

24This conditional volatility is closely related but not identical to the ATM implied volatility.
25The authors are the same with the inclusion of M. Czerwonko whose research assistance is

acknowledged in CJP.
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Figure 10: Smile Patterns and Stochastic Dominance Bounds of SPX Options with a Time to Maturity
of 30 Calendar Days from June 2003 to November 2004.

Description: All puts and calls are included. Implied volatilities are based on mid quotes.

Interpretation: No bound violations occur. SPX option prices are perfectly in line with stochastic
dominance bounds when adjusting for (a) the general level of option prices, (b) conditional volatility,
and (c) put-call parity.
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Figure 11: Smile Patterns and Stochastic Dominance Bounds of SPX Options with a Time to Maturity
of 30 Calendar Days from December 2004 to May 2006.

Description: All puts and calls are included. Implied volatilities are based on mid quotes.

Interpretation: No bound violations occur. SPX option prices are perfectly in line with stochastic
dominance bounds when adjusting for (a) the general level of option prices, (b) conditional volatility,
and (c) put-call parity.



Mispricing of Index Options 49

0.90 0.95 1.00 1.05

0.
00

0.
10

0.
20

February 15, 2006

Moneyness

Im
pl

ie
d 

vo
la

til
ity

American options
European options

0.90 0.95 1.00 1.05

0.
00

0.
10

0.
20

March 22, 2006

Moneyness

Im
pl

ie
d 

vo
la

til
ity

American options
European options

0.90 0.95 1.00 1.05

0.
00

0.
10

0.
20

April 19, 2006

Moneyness

Im
pl

ie
d 

vo
la

til
ity

American options
European options

0.90 0.95 1.00 1.05

0.
00

0.
10

0.
20

May 17, 2006

Moneyness

Im
pl

ie
d 

vo
la

til
ity

American options
European options

Figure 12: Comparison of Smile Patterns of American-Type S&P 500 Futures Options with European-
Type S&P 500 Index Options (SPX).

Description: The graphs illustrate the smile pattern of both options in the last four months of the
sample period of CJP. The implied volatilities of the American options are based on settlement prices,
while those of the European options are based on midpoints of bid and ask quotes. The options have a
time to maturity of 30 calendar days.

Interpretation: The two options are so similar that their smile profiles are almost indistinguishable.
If the European index options are priced in line with stochastic dominance bounds, we can safely
conclude that this is also the case for the American index future options.

index) and (2) the exercise type (American vs. European). However, the first
difference should be irrelevant for the question at hand because the futures value
is tightly linked to the index level. Moreover, the valuation effect of the second
difference–the early exercise option–is known to be small for short-term options
(see Ramaswamy and Sundaresan, 1985; Whaley, 1986). In economic terms, the
two options are extremely similar, which will be reflected in similar smile patterns.
We confirm this expectation empirically as illustrated in Figure 12. It shows
the overlay of implied volatilities of SPX options (CBOE)26 and S&P 500 futures
options (CME)27 for the last four months of the sample period in CJP (settlement

26Data source: OptionMetrics.
27Data source: “Historical DataMine—EOD (F/O) S&P 500—Complete History”, provided by

Chicago Mercantile Exchange (CME).
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data).28 The smile profiles are almost indistinguishable. We verify that this is
generally the case at least since 2000. This means that the prices of the American-
type futures options fit into the same bounds as SPX option prices. Thus, they
also fit into the much wider SD bounds for American options.29 We conclude that
our former results carry over to the American-type futures options: no substantial
violations of SD bounds are found when considering conditional volatility, the
general level of option prices and put-call parity.

5 Conclusion

For S&P 500 options, CJP report widespread violations of the SD bounds put forth
by Constantinides and Perrakis (2002). While it is well-known that index option
pricing gives rise to the pricing kernel puzzle, the mispricing documented in CJP
is far more extreme and calls into question that option markets meet even the
most basic requirements of rational pricing. We provide new evidence on potential
mispricing based on a comprehensive database of index options on the S&P 500,
EuroStoxx 50 and DAX index. Our main finding is that the three index options are
priced almost perfectly in line with SD bounds when (a) considering conditional
volatility, (b) adjusting the bounds for the general level of option prices and (c)
using put-call parity to estimate the dividend-adjusted underlying index level. Our
results strongly suggest that index option prices are consistent with put-call parity,
but we do not address the question of whether the general level of option prices
is appropriate. Under conditions (a) to (c), more than 96% of option transactions
in the period 1995 to 2014 (DAX) and 2000 to 2014 (SPX and ESX) lie within
the bounds. The rare cases of systematic violations can be attributed to crisis
events such as the bankruptcy of Lehman Brothers in September 2008. The pricing
pattern in these months is still very regular and can naturally be explained by a
slightly different shape of the one-month index return distribution. In all, our
results indicate that index option markets might be much more efficient than
previous literature suggests.

28We use the implied volatilities provided by CME. For two months, we verify that these are almost
identical to our own calculations based on the Barone-Adesi and Whaley (1987) approximation of
American option values with an underlying asset value consistent with put-call parity. While the
put-call-parity relation is not a strict theoretical requirement as in the case of European options, it
is a plausible approximation given the small valuation effect of the early exercise option on ATM
options.

29See the illustration for one date (May 22, 1996) in Constantinides et al. (2011), Figure 1. Even
at-the-money, the span between the tightest bounds (call upper bound and put lower bound) is
huge, with about 15 percentage points of implied volatility. (The actual quotes are not shown in the
graph.)
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Appendix: “Radiation” Phenomenon

On some days, a number of observations appears to radiate from the center of the
smile profile as shown in the left graph of Figure A1 (SPX option on August 20,
2008). A close inspection of the data reveals that this pattern arises from option
prices that remain constant at different index levels. For example, the middle graph
of Figure A1 shows trades in call (blue circles) and put (black crosses) options
with strike price 1,265 and an option price of exactly 30. Because the strike price
is constant, the variation of moneyness reflects changes in the index level. To
offset these changes and remain at a constant option price, implied volatility has
to move along the “ radiation” trajectories seen in the left and middle graph.

The “radiation” phenomenon is observed since 2006. It is particularly pro-
nounced in 2008 and 2009 and only occurs in options with moneyness very close
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Figure A1: Radiation Phonomenon in SPX Smile Profile.

Description: Black crosses: put options, blue circles: call options. The left graph shows an example
of a particular pattern of trades radiating from the center of the smile profile on August 20, 2008. The
phenomenon occurs with varying intensity since 2006 when the maturity date falls into the quarterly
cycle of maturities of index futures. Our explanation is that the pattern is caused by combined trades
that have to be decomposed for recording in the CBOE reporting system. The artificial component
prices are apparent from constant integer option prices in the middle graph. We apply a simple
identification rule to remove (a part of) the corresponding trades. The result is shown in the right
graph.

Interpretation: The way of recording combined option strategies in the CBOE reporting system can
produce artificial deviations from the regular smile profile. A simple identification rule allows us to
remove an important part of these trades.
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Figure A2: Further Illustrations of Radiation Phenomenon and Our Correction.

Description: Black crosses: put options, blue circles: call options. The left graphs show examples
of a particular pattern of trades radiating from the center of the smile profile of SPX options. The
phenomenon occurs with varying intensity since 2006 when the maturity date falls into the quarterly
cycle of maturities of index futures. Our explanation is that the pattern is caused by combined
trades that have to be decomposed for recording in the CBOE reporting system. We apply a simple
identification rule to remove (a part of) the corresponding trades. The result is shown in the right
graphs.

Interpretation: The way of recording combined option strategies in the CBOE reporting system can
produce artificial deviations from the regular smile profile. A simple identification rule allows us to
remove an important part of these trades.
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to 1.00 and a maturity date of the quarterly cycle March, June, September, and
December. Our explanation is that these trades are part of a combined trading
strategy involving put and call options as well as index futures contracts, which
are available only for the quarterly maturity cycle. For example, the option part
might comprise a long put and a short call as in a collar trade. In this trade,
buyer and seller agree upon a price for the package of the options (e.g., $1 collar
price) without specifying the prices of the individual components. The CBOE
reporting system, however, allows only entries for simple put and call options.
Therefore, the collar price has to be decomposed. To simplify the entry, an integer
value is typically used for at least one of the two price components. For example,
a collar price of $1 might be recorded as $34 for the embedded long put and
$33 for the embedded short call. When the collar price decreases to $0.50, the
recorded put price might be kept constant at $34 while the call price is adjusted
to $33.50 or the put price might be reduced to $33.50 while the call price is left
at $33. In any case, the recorded prices are not informative if their connection is
lost.

The CBOE trade files do not allow for identifying combined trades.30 Therefore,
we develop a simple identification rule and remove the corresponding observations
from our database. Our rule is to remove records which fulfill all of the following
four conditions: (a) trade year 2006 or later, (b) maturity date of the quarterly
cycle, (c) moneyness between 0.99 and 1.01, and (d) integer value of the option
price. The right graph of Figure A1 shows that on this particular day, our rule
effectively removes the artefact. In general, the rule is, of course, imprecise for two
reasons. First, many trades that fulfill the four criteria will be “regular” trades (not
part of a complex strategy). For our study, the reduced quantity is not a concern
because there is an abundance of daily trades in ATM options. Moreover, removing
these trades is not likely to bias our results because there is no apparent reason
why regular trades that fulfill conditions (a) to (d) might be more or less prone
to bound violations than other regular trades. Second, the rule will eliminate
only one “leg” of the combined trade, except for cases with an integer collar price.
This means that the other “leg” will still artificially increase the number of bound
violations. In this sense, our correction rule is conservative. It could be improved
in different ways, for example by considering the distance to the smile. We do not
follow this direction in order to minimize the risk that real bound violations are
removed.

Figure A2 illustrates our correction with three further examples (left graph:
before correction, right graph: after correction). The upper panel shows one of
the most pronounced radiation artefacts in our data. Apparently, it is partially
removed. The middle and lower panels show examples where the radiation
phenomenon is less pronounced but still stronger than on almost all the other

30The CBOE Support Team (Market Data Express) confirmed in writing that no details are available
for identifying combined trades. I am not aware of a discussion of this phenomenon in the literature.



54 Martin Wallmeier

days in our sample. We follow from these examples and a visual inspection of all
other smile profiles that our correction works reasonably well.
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