Autologous neural cell ecosystems (ANCE) transplantation as therapy for Parkinson’s disease: a promising approach

Cognition day – the 5th of October 2016 – University of Fribourg

Simon Borgognon

Laboratory of Prof. Eric Rouiller (UNIFR)
In collaboration with Dr. Jocelyne Bloch & Dr. Jean-François Brunet (CHUV)
Motor cortices & corticospinal tract (CST)

Dum & Strick (2002). *Physiology & Behavior*

[Link to Physiology & Behavior](http://www2.fiu.edu/~condon/pathway.htm)
Simplified motor circuits: direct and indirect pathways

Parkinson’s disease (PD): 2nd most common neurodegenerative disease

Dauer & Przedborski (2003). *Neuron*

Gowers (1886). *A manual of disease of nervous system*

Wolter & Baumann (2014). *Parkinson Disease and Other Movement Disorders*
Parkinson’s disease (PD): treatments

Pharmacological treatments:
Levodopa, dopa agonist, ...
→ dyskinesia,...

Surgical approach:
Deep brain stimulation (DBS)
→ symptomatic treatment

Cell therapies:
- Stem cells
- induced pluripotent stem cells (iPSCs)
→ Immune limitations, tumors, ...

Autologous neural cell ecosystems (ANCE) transplantation

Primate adult brain cell autotransplantation, a new tool for brain repair?

Jean-François Brunet, Eric Rouiller, Thierry Wanner, Jean-Guy Villemure, Jocelyne Bloch

1 Department of Neurosurgery, Lausanne University Hospital, 1011 Lausanne, Switzerland
2 Institute of Physiology, Department of Medicine, University of Fribourg, Ch.-du-Marché 5, 1700 Fribourg, Switzerland
3 Received 21 December 2004; revised 3 April 2005; accepted 7 April 2005

Available online 23 May 2005

Primate Adult Brain Cell Autotransplantation, a Pilot Study in Asymptomatic MPTP-Treated Monkeys

Jean-François Brunet, Jr., and Jocelyne Bloch

*Department of Neurosurgery, Lausanne University Hospital, 1011 Lausanne, Switzerland
†Department of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA

Primate Adult Brain Cell Autotransplantation Produces Behavioral and Biological Recovery in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonian St. Kitts Monkeys

Jocelyne Bloch, Jean-François Brunet, Caleb R.S. McEntire, and D. Eugene Redmond

1 Department of Clinical Neurosciences, Lausanne University Hospital, 1011, Lausanne, Switzerland
2 Department of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
Experimental design

4 adult female macaque monkeys (*Macaca fascicularis*) → Parkinsonian (MPTP) lesion **AND** the cells transplantations

Bloch et al., 2014: efficiency of ANCE transplantation in parkinsonian monkeys

Present study: investigation of the ANCE impact assessing with brain imaging & with fine manual motor behavior

Comparison between PRE VS POST-LESION VS POST-TRANSPLANTATION **for each monkey**
Pre-lesion phase: quantitative evaluation of the motor performance

Modified-Brinkman board task
Reach and grasp drawer task
Parkinsonian lesion: the MPTP non-human primate model

2010

months

jan feb ... jul aug sep oct

2014
Cortical biopsies & cell cultures

~10mm3 of cortical tissue from the dorsolateral prefrontal cortex (dLPFC)

Ecosystem formation \textit{in-vitro}
Post-lesion phase: quantitative evaluation of the motor deficits

Monkey-MY – 7 days post-lesion Monkey-MI – 14 days post-lesion
Cells transplantation: Stereotaxic implantations

Coordinates in MRI scans → Transplantation

6 implantation sites within the Striatum

<table>
<thead>
<tr>
<th>Left hemisphere</th>
<th>Right Hemisphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudate nucleus</td>
<td>Caudate nucleus</td>
</tr>
<tr>
<td>Putamen anterior</td>
<td>Putamen anterior</td>
</tr>
<tr>
<td>Putamen posterior</td>
<td>Putamen posterior</td>
</tr>
</tbody>
</table>

Biopsy

Cells transplantation

MRI acquisitions

2010

months

jan feb ... jul aug

2014

sep oct nov dec
Post-transplantation phase: quantitative evaluation of the motor improvement

In-vivo imaging: state of the dopaminergic system with \(^{18}\text{F}\)-Dopa PET scan

Example in human

Piccini & Whone (2004). *The Lancet Neurology*

![PET scan images](image)

Patlak algorithm → influx rate constant (Ki)
MPTP lesion and symptoms

- **Pre-lesion** and **Post-lesion**

\[^{18} \text{F-Dopa influx constant (Ki)} \% \]

- **% of pre-lesion Ki**

- **Parkinsonian symptoms evaluated with the Schneider scale**

- **Total Schneider score**

- **Sessions (71 days) from cells transplantations**

- **Monkey-LY** → resistant to MPTP
- **Monkey-LL** → recovered to MPTP
- **Monkey-MY** → moderate PD symptoms
- **Monkey-MI** → severe PD symptoms
Fine manual dexterity in the Modified-Brinkman board task

Monkey-LY

<table>
<thead>
<tr>
<th></th>
<th># of pellets in 30 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left hand</td>
<td>ns</td>
</tr>
<tr>
<td>Right hand</td>
<td>ns</td>
</tr>
</tbody>
</table>

Monkey-LL

<table>
<thead>
<tr>
<th></th>
<th># of pellets correctly retrieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left hand</td>
<td>***</td>
</tr>
<tr>
<td>Right hand</td>
<td>ns</td>
</tr>
</tbody>
</table>

Monkey-MY

<table>
<thead>
<tr>
<th></th>
<th># of pellets in 30 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left hand</td>
<td>**</td>
</tr>
<tr>
<td>Right hand</td>
<td>***</td>
</tr>
</tbody>
</table>

Monkey-MI

<table>
<thead>
<tr>
<th></th>
<th># of pellets in 30 seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right hand</td>
<td>***</td>
</tr>
</tbody>
</table>
Time to execute movement in the drawer task

Monkey-LY
- *ns*
- ***ns***

Monkey-LL
- *ns ns*
- ns

Monkey-MY
- ***ns***
- ***ns***

Monkey-MI
- Trials duration [s]
- ***
- *x*
State of the dopaminergic system

PET influx constant (Ki) %

- Monkey-LY: +17.53%
- Monkey-LL: +12.21%
- Monkey-MY: +21.37%
- Monkey-MI: +10.82%

Images show pre-lesion, post-lesion, and post-transplantation states.
• All the four animals were differentially affected by the MPTP lesion (*inter-individual variability*)
 - No correlation between lesion level and behavioral functions
 - Complexity of the MPTP model (Elsworth et al, (2000). *Neuroscience*)

• Cell transplantation promoted *recovery* in voluntary motor tasks and *increase of striatal activity*

• ANCE transplantation represents an *attractive approach* in order to treat brain dysfunction or brain lesion.

• This promising technique might add *new therapeutic strategies* leading to clinical applications.
Next step: fate of the implanted cells

- **Histological readout**: cells survival, migration, astrocytes activation, 5-HT in resistant and/or recovered monkeys?

Implanted cells in Monkey-MY, Caudate nucleus. Scale = 50um

- **Hypothesis**: release of neurotrophic factor (BDNF, GDNF,…) -> **Neuroprotection** effect? **Sprouting** of the remaining dopamine fibers (already suggested by PETscan)?

<table>
<thead>
<tr>
<th>Promising approach?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe parkinsonian Monkey-MI (4 days post-lesion)</td>
</tr>
</tbody>
</table>
Acknowledgments

Prof. Eric M. Rouiller
Dr. Simon Badoud
Jérôme Cottet
Pauline Chatagny
Véronique Moret
Michela Fregosi
Laura Carrara
Dr. Eric Schmidlin
Laurent Bossy
Jacques Maillard
David Michel
André Gaillard
Christine Roulin
All the lab members
Dr. Jocelyne Bloch
Dr. Jean-François Brunet
Dr. Nathalie Ginovart

Radiology
Prof. Henri-Marcel Hoogewoud
Eric Dafflon

Nuclear medicine
Dr. Cristian Antonescu
Didier Maillard
Bernard Gex